
CICS® Transaction Server for z/OS™

Release Guide
Version 2 Release 1

GC34-5701-00

���

CICS® Transaction Server for z/OS™

Release Guide
Version 2 Release 1

GC34-5701-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 209.

First edition (March 2001)

This edition applies to Version 2 Release 1 of CICS Transaction Server for z/OS, program number 5697-E93, and to
all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories,
User Technologies, Mail Point 095,
Hursley Park, Winchester, Hampshire, England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . ix
What this book is about . ix
Who this book is for . ix
What you need to know to understand this book ix
How to use this book . ix
Notes on terminology . ix

Part 1. Summary of CICS TS. 1

Chapter 1. Summary of CICS TS 3
Enterprise JavaBeans™ in CICS 3

Enterprise JavaBeans . 3
Enhancements to CORBA support 3
The CICS Connector for CICS TS 3
CICS support for the persistent reusable JVM 4
Enhancements to CICS support of TCP/IP 4
Java Naming and Directory Interface™ (JNDI) 4
Deploying enterprise beans . 4
CICSPlex® SM management of enterprise beans 5
CICSPlex SM workload management of enterprise beans 5

System management and Parallel Sysplex® support 5
CICS support for VTAM® dynamic alias 5
Domain name system (DNS) connection optimization 5
Automatic restart of CICS data sharing servers 5
Monitoring and statistics changes 5

Miscellaneous enhancements and changes 6
Hardware and software requirements 6

Part 2. Enterprise JavaBeans in CICS . 7

Chapter 2. Introduction to Enterprise JavaBeans™ 9
Overview . 9

The big picture . 9
JavaBeans and Enterprise JavaBeans 10
The EJB server . 11
The EJB container . 12
The home and remote interfaces 13
The deployment descriptor 14
Types of enterprise bean . 15
Managing transactions . 17
Accessing data . 19
Security . 21
User tasks . 21
Deploying enterprise beans 23
Configuring CICS as an EJB server 24
What can a client do with a bean?. 30
What can a bean do? . 30

Benefits . 31
Requirements . 32

Hardware . 32
Software . 32

Changes to CICS externals . 32

© Copyright IBM Corp. 2001 iii

Changes to system initialization. 33
Changes to system definition. 33
Changes to resource definition 34
Changes to the application programming interface 48
Changes to the system programming interface 48
Changes to CICS supplied transactions 52
Changes to global user exits 53
Changes to the exit programming interface (XPI) 53
Changes to user-replaceable programs 54
Changes to monitoring . 54
Changes to statistics . 54
Changes to problem determination 54
Changes to sample programs 56

Chapter 3. Enhancements to CORBA support 59
Overview . 59

Changes affecting existing IIOP applications 60
Supported client and server platforms 60
IIOP request processing . 61
Workload balancing . 62

Benefits . 62
Requirements . 63
Changes to CICS externals . 63

Changes to the IIOP sample resource definitions 64

Chapter 4. The CICS Connector for CICS TS 65
Overview . 65

What are CICS connectors? 65
The CICS Connector for CICS TS 66
The background—accessing CICS programs from Java 66

Using the CICS Connector for CICS TS’s CCF interface. 69
Setting the CCF interface attributes 71
Data conversion . 73
Introducing VisualAge for Java Enterprise Access Builder 74

Using the CTG API . 76
ECIRequest . 77
JavaGateway . 78

Benefits . 79
Requirements . 79
Restrictions and recommendations for the CICS Connector for CICS TS. . . . 79
Installation . 80
Changes to CICS externals . 81

Messages. 81
Trace points . 81

Chapter 5. CICS support for the IBM persistent reusable JVM 83
Overview . 83

Enabling serial reuse. 83
The run-time structure of the JVM 84
How CICS manages the JVMs 85
Managing the size of the pool 85
Selecting the right type of JVM 86
Use of resource definitions for JVM selection 87
Debugging support in the CICS JVM 88
Restrictions . 88

Benefits . 89

iv CICS Transaction Server: Release Guide

Requirements . 89
Changes to CICS externals . 89

Changes to system initialization parameters 89
Changes to resource definition 90
Changes to JVM initialization parameters 91
Changes to the application programming interface 97
Changes to the system programming interface 98
Changes to the exit programming interface (XPI) 100
Changes to CICS-supplied transactions 100
Changes to global user exits 100
Changes to user-replaceable modules 100
Changes to monitoring and statistics 101
Changes to problem determination 101

Chapter 6. Enhancements to CICS support of TCP/IP 103
Overview . 103
Benefits . 104
Requirements . 104
Changes to CICS externals . 104

Changes to system initialization parameters 105
Changes to the system programming interface 105
Changes to CICS supplied transactions 106
Changes to monitoring and statistics 107
Changes to samples . 107
Changes to CICS-supplied utilities 107

Chapter 7. Java Naming and Directory Interface™ (JNDI) 109
Overview of JNDI in CICS . 109

Security . 109
Benefits of JNDI in CICS . 109
Requirements . 110
Changes to CICS externals . 110

Other external interfaces . 110

Chapter 8. Deploying enterprise beans 111
Overview. 111
Benefits . 113
Requirements . 114

Hardware . 114
Software . 114

Changes to CICS externals . 115
The CICS JAR development tool for EJB technology 115
The CICS code generation utility for EJB technology 118
The CICS development deployment tool for EJB technology 120
The CICS production deployment tool for EJB technology 121
The final stages of deployment 122
Problem determination . 123

CICS security considerations 124
Installation and setup . 124

Setting up the development deployment Web application 125
Controlling deployment using the deployment configuration file 125
Setting up the CICS components of the development deployment tool 126

Chapter 9. CICSPlex SM management of enterprise beans 129
Overview . 129
Changes to CICSPlex SM externals 129

Contents v

EUI changes . 130
Web User Interface changes 140

CICSPlex SM API changes. 140
New BAS resource definition tables 140
Modified BAS resource definition tables 141
New operations resource tables 141
Modified operations resource tables. 141

CICSPlex SM workload management of enterprise beans 141
Introduction to workload management of enterprise beans 142
Workload balancing. 142
Workload separation . 143
Transaction affinities . 145
Programming interfaces . 145

Part 3. System management and Parallel Sysplex support 147

Chapter 10. CICS support for VTAM alias facility 149
Overview . 149

Dynamic LU alias support 149
Predefined LU alias support. 150
When to use VTAM LU aliases with CICS 150
Cross-network devices that need predefined LU alias 151
Considerations when using VTAM LU aliases 151
Other factors to consider . 152

Benefits . 153
Requirements . 153
Changes to CICS externals . 154

Changes to system definition 154
Changes to resource definition 154
Changes to the application programming interface 155
Changes to the system programming interface 155
Changes to CICS-supplied transactions 155
Changes to user-replaceable modules 156
Changes to monitoring . 157
Changes to problem determination 157

Chapter 11. Domain name system (DNS) connection optimization 159
Overview . 159

DNS registration . 159
Name resolution example 159

Benefits . 161
Requirements . 161
Changes to CICS externals . 161

Changes to system definition 161
Changes to resource definition 162
Changes to the system programming interface 162
Changes to CICS supplied transactions 164
Changes to problem determination 164

Chapter 12. Automatic restart of CICS data-sharing servers 165
Overview . 165

Automatic restart. 165
Waiting on events during initialization 165

Benefits . 166
Requirements . 166
Changes to CICS externals . 166

vi CICS Transaction Server: Release Guide

Changes to server initialization 166
Changes to server commands 166
Changes to problem determination 167

Chapter 13. Monitoring and statistics changes 169
Overview . 169

Monitoring . 169
Statistics. 169

Changes to CICS externals . 170
Changes to the system programming interface 170
Changes to CICS-supplied transactions 172
Changes to sample programs 172
Changes to utility programs 173
Changes to monitoring data. 173

Part 4. Miscellaneous changes . 175

Chapter 14. Other changes and enhancements 177
Integrated CICS translator . 177

Overview . 177
Benefits . 177
Requirements . 177
Change to CICS externals 178

Sample program for the XLGSTRM global user exit 178
Removal of support for the DFHDCT macro 179
Changes to CICS file control 179

Changes to file control API 179
Removal of VSAM support in the DFHFCT macros 180
Changes to global user exits in the file control domain 180

Changes to DFH0STAT . 180
Changes to other sample programs 183
Changes to CEOT transaction 183
Changes to CICSPlex SM support 184
Changes in the visual presentation of the CICSPlex SM Web user interface 185
Support for additional code pages 185

Part 5. Requirements . 187

Chapter 15. Prerequisite hardware and software for CICS Transaction
Server for z/OS . 189

Hardware prerequisites . 189
Parallel Sysplex . 189
Katakana terminal devices 189

Operating system . 190
IBM database products . 191

IMS/ESA Database Manager 191
IBM DATABASE 2 (DB2) . 191

IBM telecommunications access methods 191
MQSeries® for OS/390 . 191
OS/390 Security Server (RACF) 192
CICS VSAM Recovery . 192
Tivoli Performance Reporter for OS/390 192
NetView® for MVS/ESA™. 192
Programming languages . 192
CICS components in object-code-only (OCO) form 192

Contents vii

||

Part 6. Appendixes . 195

Glossary . 197

Bibliography . 199
CICS Transaction Server for z/OS 199

CICS books for CICS Transaction Server for z/OS 199
CICSPlex SM books for CICS Transaction Server for z/OS 200
Other CICS books . 200

Determining if a publication is current 200

Index . 203

Notices . 209
Trademarks. 210

Sending your comments to IBM 211

viii CICS Transaction Server: Release Guide

Preface

What this book is about
This book provides information about new and changed function in CICS®

Transaction Server for z/OS™, Version 2 Release 1. It gives an overview of the
changes to reference information, and points you to the manuals where more
detailed reference information is given.

The programming interface information given in this book is intended to show only
what is new and changed from the previous release of CICS TS, and to highlight
the benefits of the new function. For programming interface information, read the
primary sources of programming interface and associated information in the
following publications:
v CICS Application Programming Reference
v CICS System Programming Reference
v CICS Customization Guide
v CICS External Interfaces Guide
v CICSPlex System Manager Application Programming Guide
v CICSPlex System Manager Application Programming Reference

Who this book is for
This book is for those responsible for the following user tasks:
v Evaluation and planning
v System administration
v Programming
v Customization

It describes what is new, changed, and obsolete in the CICS and CICSPlex® SM
elements of CICS TS.

What you need to know to understand this book
The book assumes that you are familiar with CICS and CICSPlex SM, either as a
systems administrator, or as a systems or application programmer.

How to use this book
This book is organized in six parts:

v Part 1 provides a brief summary of new and changed function.

v Part 2 describes Enterprise JavaBeans™ in CICS.

v Part 3 describes system management and Parallel Sysplex® support

v Part 4 describes some miscellaneous changes.

v Part 5 covers hardware and software requirements for CICS TS Version 2, and
describes the publications that are available, in both hardcopy and softcopy.

v Part 6, the Appendixes, contains the glossary and the CICS TS bibliography.

Notes on terminology
When the term “CICS”is used without any qualification in this book, it refers to the
CICS element of IBM® CICS TS.

© Copyright IBM Corp. 2001 ix

“CICSPlex® SM” is used for the CICSPlex System Manager element of IBM CICS
TS.

“MVS™” is used for the operating system, which is a base element of OS/390®, and
of z/OS.

x CICS Transaction Server: Release Guide

Part 1. Summary of CICS TS

This Part provides a summary only of what is new and changed in CICS TS.

Part 1 contains only the summary chapter:

v “Chapter 1. Summary of CICS TS” on page 3

© Copyright IBM Corp. 2001 1

2 CICS Transaction Server: Release Guide

Chapter 1. Summary of CICS TS

This chapter summarizes what is new and changed in CICS® Transaction Server for
z/OS™, under the following main topics:

v “Enterprise JavaBeans™ in CICS”

v “System management and Parallel Sysplex® support” on page 5

v “Miscellaneous enhancements and changes” on page 6

v “Hardware and software requirements” on page 6

Enterprise JavaBeans™ in CICS
CICS support for Enterprise JavaBeans™ is summarized by the following sections:
v “Enterprise JavaBeans”
v “Enhancements to CORBA support”
v “The CICS Connector for CICS TS”
v “CICS support for the persistent reusable JVM” on page 4
v “Enhancements to CICS support of TCP/IP” on page 4
v “Java Naming and Directory Interface™ (JNDI)” on page 4
v “Deploying enterprise beans” on page 4
v “CICSPlex® SM management of enterprise beans” on page 5
v “CICSPlex SM workload management of enterprise beans” on page 5

Enterprise JavaBeans
CICS TS provides partial support for Sun Microsystems Enterprise JavaBeans
(EJB™) architecture, Version 1.1, enabling you to configure CICS as an EJB server.

For details, see “Chapter 2. Introduction to Enterprise JavaBeans™” on page 9.

Enhancements to CORBA support
CICS support for CORBA is enhanced to provide the necessary infrastructure for
Enterprise JavaBeans by the addition of the following new function. This new
function benefits all CICS IIOP applications, including stateless CORBA objects.

v Support for outbound IIOP requests from Java™ applications

v Support for the full CORBA 2.1 API

v Support for distributed transactions

GenericFactory IOR files are now created during the installation of CICS resources.
The GenericFactory IOR (genfac.ior) file is created during a PUBLISH
CORBASERVER command, and removed from JNDI during RETRACT
CORBASERVER depending on settings in the system properties file. This removes
the need for the GenFacIOR utility.

Note: IIOP applications are supported in JVM mode only. Java programs created
using VisualAge™ for Java, Enterprise ToolKit for OS/390® with the hpj
command cannot be used with IIOP applications.

For details, see “Chapter 3. Enhancements to CORBA support” on page 59.

The CICS Connector for CICS TS
The CICS Connector for CICS TS enables a Java program or EJB component
running in a CICS region to link to a CICS server application program. This allows

© Copyright IBM Corp. 2001 3

you to (for example) create powerful EJB server components that can exploit
existing CICS application programs written in the traditional application languages
supported by CICS.

For details, see “Chapter 4. The CICS Connector for CICS TS” on page 65.

CICS support for the persistent reusable JVM
CICS support for the Java Virtual Machine (JVM) exploits the enhancements in the
persistent reusable JVM available on OS/390 Release 8 and later releases. The
CICS implementation of the persistent reusable JVM provides performance
optimizations designed for the execution of high-volume transactions in a CICS
environment.

The CICS support of the persistent reusable JVM enables serial reuse of existing
JVMs, which, together with new garbage collection mechanisms, provides
significantly improved performance compared with the previous implementation.

For details, see “Chapter 5. CICS support for the IBM persistent reusable JVM” on
page 83.

Enhancements to CICS support of TCP/IP
CICS support for TCP/IP is enhanced by the addition of new function:

v Socket management, which enables you to specify the maximum number of
sockets that the CICS sockets domain should have active at one time.

v Functions that are used by the enhanced CORBA support:

– Outbound socket support

– Asynchronous receive

– Lifetime management of sockets

For details, see “Chapter 6. Enhancements to CICS support of TCP/IP” on
page 103.

Java Naming and Directory Interface™ (JNDI)
With CICS support for Enterprise JavaBeans, the JNDI application programming
interface (API) enables enterprise beans, and other Java programs running under
CICS, to look up a name or to locate an external enterprise bean, which can then
be invoked

For details, see “Chapter 7. Java Naming and Directory Interface™ (JNDI)” on
page 109.

Deploying enterprise beans
A desktop Java bean is developed, installed, and run on a workstation. An
enterprise bean, however, which will run on a server, requires an additional stage,
to prepare the bean for the runtime environment and install it into the EJB server.

For details, see “Chapter 8. Deploying enterprise beans” on page 111

4 CICS Transaction Server: Release Guide

CICSPlex® SM management of enterprise beans
CICSPlex SM is enhanced to support the implementation of enterprise beans in a
CICS EJB server. There are new and modified operator views, new and modified
BAS views, and enhancements to the CICSPlex SM API and Web User Interface to
support for CORBA servers and jars.

For details, see “Chapter 9. CICSPlex SM management of enterprise beans” on
page 129 .

CICSPlex SM workload management of enterprise beans
CICSPlex SM provides dynamic workload management of enterprise beans
executing in CICS-provided CORBA servers, and extends the distributed routing
program (DSRTPRG) routing model

For details, see “CICSPlex SM workload management of enterprise beans” on
page 141.

System management and Parallel Sysplex® support
CICS system management and Parallel Sysplex support is enhanced by the
following new function:

v “CICS support for VTAM® dynamic alias”

v “Domain name system (DNS) connection optimization”

v “Automatic restart of CICS data sharing servers”

v “Monitoring and statistics changes”

CICS support for VTAM® dynamic alias
Support for VTAM LU aliases enables CICS to use a VTAM-supplied LU alias for
autoinstalled terminals and work stations. CICS supports both forms of the dynamic
LU alias function—predefined and dynamic.

For details, see “Chapter 10. CICS support for VTAM alias facility” on page 149.

Domain name system (DNS) connection optimization
CICS supports the domain name system (DNS) connection optimization to balance
IP connections in a sysplex domain.

For details, see “Chapter 11. Domain name system (DNS) connection optimization”
on page 159.

Automatic restart of CICS data sharing servers
Support is added to all three types of CICS data-sharing server—temporary
storage, coupling facility data tables, and named counters—to enable them to
restart automatically using the services of the MVS™ automatic restart manager
(ARM).

For details, see “Chapter 12. Automatic restart of CICS data-sharing servers” on
page 165.

Monitoring and statistics changes
There are various changes to CICS monitoring and statistics data in support of the
new and changed function in CICS.

Chapter 1. Summary of CICS TS 5

For details, see “Chapter 13. Monitoring and statistics changes” on page 169.

Miscellaneous enhancements and changes
These include:
v Integration of the CICS translator into the latest releases of the COBOL and PL/I

compilers
v Provision of a sample program for the XLGSTRM global user exit
v Removal of run-time support for the destination control table (DCT), making the

DCT system initialization parameter obsolete
v Enhancements and changes to CICS file control
v Major changes to the sample statistics program, DFH0STAT
v Changes to other sample programs
v Enhancements to the CEOT transaction
v Changes to CICSPlex SM support
v Changes to the CICSPlex SM Web user interface
v Suuport for additional code pages.

See “Chapter 14. Other changes and enhancements” on page 177 for details.

Hardware and software requirements
Hardware and software requirements are described in “Chapter 15. Prerequisite
hardware and software for CICS Transaction Server for z/OS” on page 189.

6 CICS Transaction Server: Release Guide

Part 2. Enterprise JavaBeans in CICS

This Part describes all the new function included in CICS to provide support for
Enterprise JavaBeans. It covers the following topics:

v “Chapter 2. Introduction to Enterprise JavaBeans™” on page 9

v “Chapter 3. Enhancements to CORBA support” on page 59

v “Chapter 4. The CICS Connector for CICS TS” on page 65

v “Chapter 5. CICS support for the IBM persistent reusable JVM” on page 83

v “Chapter 6. Enhancements to CICS support of TCP/IP” on page 103

v “Chapter 7. Java Naming and Directory Interface™ (JNDI)” on page 109

v “Chapter 8. Deploying enterprise beans” on page 111

v “Chapter 9. CICSPlex SM management of enterprise beans” on page 129

© Copyright IBM Corp. 2001 7

8 CICS Transaction Server: Release Guide

Chapter 2. Introduction to Enterprise JavaBeans™

This chapter describes CICS support for the Enterprise JavaBeans (EJB)
architecture.

About Enterprise JavaBeans
This chapter is intended as an introduction to CICS support for Enterprise
JavaBeans. It does not attempt to describe the Enterprise JavaBeans
architecture in depth. If you need a full description of the EJB architecture, see
Sun Microsystem’s Enterprise JavaBeans Specification, Version 1.1, which is
available at http://www.javasoft.com/products/ejb.

The chapter covers the following topics:
v “Overview”
v “Benefits” on page 31
v “Requirements” on page 32
v “Changes to CICS externals” on page 32

Overview
This section begins by showing you the “big picture”—what CICS support for
Enterprise JavaBeans means in general terms. The sub-sections that follow fill in
the details.

The big picture
Sun Microsystem’s Enterprise JavaBeans Specification, Version 1.1, defines a
model for the development of reusable Java server components (known as
enterprise beans) that can be used in any application server that provides the
services and interfaces defined by the specification.

CICS Transaction Server for z/OS Version 2 Release 1 offers partial support for
Version 1.1 of the Enterprise JavaBeans specification. Future releases of CICS will
support the specification more fully, particularly in regard to security.

You can configure CICS as an EJB server. CICS provides a run-time environment
where requests for EJB services are mapped to existing or enhanced CICS
services.

You can write enterprise beans that give Java clients access to your past
investment in CICS applications and data. For example, you can write enterprise
beans that:

v Use the JCICS classes1 to access CICS resources.

v Use JCICS or the new CICS Connector for CICS TS1 to link to existing CICS
programs written in procedural languages such as COBOL. (For information
about the CICS Connector for CICS TS, see page 65.)

Figure 1 on page 10 shows, in simplified form, a CICS EJB application server
interacting with its environment. It shows enterprise beans that have been
developed on a workstation being installed into the EJB server by a process known

1. Enterprise beans that use the JCICS classes are not portable to a non-CICS environment.

© Copyright IBM Corp. 2001 9

as deployment. Once installed in the server, the enterprise beans are executed in
a Java Virtual Machine (JVM) at the request of a client program.

Note: The details of Figure 1 are explained in the sections that follow.

JavaBeans and Enterprise JavaBeans
JavaBeans and Enterprise JavaBeans are component architectures for the Java
language.

Components
A component is a reusable software building block; a pre-built piece of
encapsulated application code that can be combined with other components and
with handwritten code to produce a custom-built application rapidly.

An application developer can make use of a component without requiring access to
its source code. Components can be customized to suit the specific requirements of
an application through a set of external property values. For example, a button
component has a property that specifies the caption that should appear on the
button. An account management component has a property that specifies the
location of the account database.

Components execute within a construct called a container, which (among other
things) provides an operating system process in which to execute the component.

CSD

deployment

JVM

ejb-jar

client

= dataflow

install

JDBC

readcheck

JN
DI

CICS EJB Server

DB2

HFS

deployed
JAR

development

enterprise
bean

lookup

External
security
manager

IIOP connection

bind

namespace

Figure 1. A CICS EJB application server. Enterprise beans developed on a workstation are installed into the EJB
server by a process known as deployment. They are executed in a JVM at the request of a client program. The details
of this picture are explained in the sections that follow.

Note: The picture shows an external security manager. EJB resource security—the checking of access to enterprise
beans, based on EJB security roles—is not supported in CICS TS for z/OS Version 2.1.

10 CICS Transaction Server: Release Guide

The component model defines the interfaces by which the component interacts
with its container and with other components. The developer of a component can
code it using a variety of internal methods and properties but, to ensure that it can
be used with other components, he or she must implement the interfaces defined in
the component model. These interfaces also allow components to be loaded into
rapid application development (RAD) tools, such as IBM®’s VisualAge® for Java or
Symantec’s Visual Café.

JavaBeans
A JavaBean is a self-contained, reusable software component, written in Java,
usually intended for use in a desktop or client application. Typically, desktop
JavaBeans have a visual element, and execute within some type of visual
container, such as a form, panel, or Web page. Examples might range from a
simple button to a fully-featured software CD player.

Bean developers can use a visual tool, such as VisualAge for Java, to create
JavaBeans. Application developers can use such tools to “wire” JavaBeans together
into a larger application, and to set the properties of individual beans.

Enterprise JavaBeans
The Enterprise JavaBeans architecture supports server components. Server
components are application components that run in an application server such as
CICS. Unlike desktop components, they do not have a visual element and the
container they run in is not visual.

Server components written to the Enterprise JavaBeans specification are known as
enterprise beans. They are portable across any EJB-compliant application server.

To be useful, server components require access to the application server’s
infrastructure services, such as its distributed communication service, naming and
directory services, transaction management service, data access and persistence
services, and resource-sharing services. Different application servers implement
these infrastructure services using different technologies. However, an
EJB-compliant application server provides an enterprise bean with access to these
services through standard interfaces, and manages many of them on behalf of the
bean.

Bean developers can use a visual tool, such as VisualAge for Java, to create
enterprise beans. Application developers can combine method calls to enterprise
beans with desktop JavaBeans, Web servlets, and handwritten code to form
client/server applications.

Note: Release 3.5 of VisualAge for Java supports Version 1.0 of the Enterprise
JavaBeans specification, but does not support Version 1.1.

If you develop enterprise beans with VisualAge for Java 3.5, you will need to
use the CICS JAR development tool for EJB technology and the CICS code
generation utility for EJB technology before using one of the CICS
deployment tools for EJB Technology. For more information about this, see
the Java Applications in CICS manual.

The EJB server
An EJB-compliant application server is known as an EJB server. An EJB server
could be a transaction processing monitor such as CICS, a Web server, a

Chapter 2. Introduction to Enterprise JavaBeans™ 11

database, or some other type of server. Note that a CICS EJB server may comprise
multiple CICS regions, as described in “Logical servers — enterprise beans in a
sysplex” on page 25.

An EJB server provides a standard set of services to support enterprise bean
components. These services include:

v Support of the Java Remote Method Invocation (RMI) interface that is used by
enterprise beans for communication. RMI has two transport protocol
options—JRMP for Java-to-Java interoperation and IIOP for interlanguage
interoperation, mediated using a CORBA Object Request Broker (ORB).

CICS Transaction Server for z/OS, Version 2 Release 1 supports RMI over IIOP
(RMI-IIOP), but not JRMP. (JRMP is a proprietary interface which does not
support a transaction service context.)

v A container, called an EJB container, which provides management services for
enterprise beans.

v A distributed transaction management service that implements the
javax.transaction.UserTransaction interface of the Java Transaction API (JTA).2

v Security services.

v Support for the Java Naming and Directory Interface (JNDI). The JNDI API
provides the directory and naming function for Java applications. It enables a
client to locate an enterprise bean.

v Support for the Java Data Base Connectivity (JDBC) interface.

The EJB container
Whereas desktop JavaBeans usually run within a visual container such as a form or
a Web page, an enterprise bean runs within a container provided by the application
server.

The EJB container creates and manages enterprise bean instances at run-time, and
provides the services required by each enterprise bean running in it.

The EJB container supports a number of implicit services, including lifecycle, state
management, security, transaction management, and persistence:

Lifecycle
Individual enterprise beans do not need to manage process allocation, thread
management, object activation, or object passivation explicitly. The EJB
container automatically manages the object lifecycle on behalf of the enterprise
bean.

State management
Individual enterprise beans do not need to save or restore object state between
method calls explicitly. The EJB container automatically manages object state
on behalf of the enterprise bean.

Security
Individual enterprise beans do not need to authenticate users or check
authorization levels explicitly. The EJB container can automatically perform all
security checking on behalf of the enterprise bean.

Transaction management
Individual enterprise beans do not need to specify transaction demarcation code

2. The javax.transaction.UserTransaction interface is used by session beans that manage their own transactions, as described later in
this chapter.

12 CICS Transaction Server: Release Guide

to participate in distributed transactions. The EJB container can automatically
manage the start, enrollment, commitment, and rollback of transactions on
behalf of the enterprise bean.

Persistence
Individual enterprise beans do not need to retrieve or store persistent data from
a database explicitly. The EJB container can automatically manage persistent
data on behalf of the enterprise bean.

The execution environment
Before enterprise beans can be deployed into an EJB server, their execution
environment must be configured. In CICS, this is achieved by installing a
CORBASERVER resource definition. A CORBASERVER defines an execution
environment for enterprise beans and CORBA stateless objects. For convenience,
we shall refer to the execution environment defined by a CORBASERVER definition
as a CorbaServer.

Note that:

v A CICS EJB server may contain more than one CorbaServer.

v Any number of enterprise beans can be deployed into the same CorbaServer.

v A specific enterprise bean can be deployed multiple times into the same CICS
EJB server, but not into the same CorbaServer. (In other words, to install a
specific enterprise bean multiple times into the same CICS EJB server you must
install it into different CorbaServer execution environments. One reason for doing
this might be to make the bean available with different deployment
properties—see “The deployment descriptor” on page 14.) Each deployment
results in the creation of a distinct home object (see “The home and remote
interfaces”).

The home and remote interfaces
Client applications do not interact with an enterprise bean directly. Instead, the
client interacts with the enterprise bean through two intermediate objects that are
created by the container from classes generated by a deployment tool—one of
which classes implements the EJB home interface and the other the EJB remote
interface. As the client invokes operations using these intermediate objects, the
container intercepts each method call and inserts the management services.

The home and remote interfaces are implemented as Java RMI remote objects,
which allows the ORB to support them as distributed objects.

The home interface
The home interface is the mechanism by which the client identifies the
enterprise bean it wants. It allows a client to create, remove, and (for entity
beans, not supported by CICS) find existing instances of, enterprise beans.
Note that the “client” might not be a program running on a network workstation;
it might, for example, be a servlet running on a Web server; or an enterprise
bean, program, or object on the local EJB server, or on another EJB server.

When a bean is deployed in an EJB server, the container registers the home
interface in a namespace that is accessible remotely. Using the Java Naming
and Directory Interface (JNDI) API, any client with access to the namespace
can locate the home interface by name.

The remote interface
The remote interface allows a client to access the business methods of the
enterprise bean. When a client creates or finds an instance of an enterprise
bean, the container returns an EJB remote interface object (one per instance).

Chapter 2. Introduction to Enterprise JavaBeans™ 13

The remote interface intercepts all business method calls from the client and
inserts whatever transaction, state management, persistence, and security
services were specified when the bean was deployed.

The deployment descriptor
The rules governing an enterprise bean’s lifecycle, transaction management,
security, and persistence are defined in an associated XML document called a
deployment descriptor. See “Deploying enterprise beans” on page 23.

Re-usable components may be customizable through a set of external property
values, so that they can be modified to suit the requirements of a particular
application without changing the source code. An enterprise bean developer can
provide (within the deployment descriptor) a set of environment properties to
allow the application developer to customize the bean. For example, a property
might be used to specify the location of a database or to specify a default national
language. At run time, an environment object is created which contains the
customized property values set during the application assembly process or the bean
deployment process.

Figure 2 on page 15 shows enterprise bean objects in a CICS EJB server.

14 CICS Transaction Server: Release Guide

Types of enterprise bean
This section discusses the two types of enterprise bean—session beans and
entity beans.

Session beans
A session bean:

v Is created by a client and represents a single conversation, or session, with that
client.

v Typically, persists only for the life of the conversation with the client. In this
sense, it can be likened to a pseudoconversational transaction.

If the bean developer chooses to save information beyond the life of a session,
he or she must implement persistence operations—for example, JDBC™ or SQL
calls—directly in the bean class methods.

v Typically, performs operations on business data on behalf of the client, such as
accessing a database or performing calculations.

CICS EJB server

EJB container

Client

RMI / IIOP

create
remove

business
methods

CorbaServer execution environment

EJB instance

EJB Home

EJB Remote

Deployment descriptor

Environment
properties

Figure 2. Enterprise bean objects in a CICS EJB server. The EJB container manages and provides services to the
enterprise beans contained within it. When a bean is deployed, the deployment tool generates the EJB home and
remote interface classes.

The home interface is accessible through JNDI and implements lifecycle services for the bean. The client uses it to
create, remove, and (for entity beans, not directly supported by CICS) find instances of enterprise beans.

The container creates an EJB remote interface object for each instance of the bean. The remote interface provides
access to the business methods within the bean. It intercepts all business method calls from the client and implements
transaction, state management, persistence, and security services for the bean, based on the settings of the bean’s
deployment descriptor.

Chapter 2. Introduction to Enterprise JavaBeans™ 15

v May or may not be transactional. If it’s transactional, it can manage its own
Object Transaction Service (OTS) transactions, or use container-managed OTS
transactions. For an explanation of the relationship between OTS transactions
and CICS units of work, see “Managing transactions” on page 17.

v Is not recoverable—if the EJB server crashes, it may be destroyed.

v Has two flavors: stateful and stateless.

Stateful session beans: A stateful session bean has a client-specific
conversational state, which it maintains across methods and transactions; for
example, a shopping cart object would maintain a list of the items selected for
purchase by the user.

A stateful session bean that manages its own transactions can begin an OTS
transaction in one method and commit or roll it back in a subsequent method.

Stateless session beans: A stateless session bean has no client-specific (nor
any other kind of) non-transient state; for example, a stock quotation object might
simply return current share prices.

A stateless session bean that manages its own transactions and begins a
transaction must commit (or roll back) the transaction in the same method in which
it started it.

Entity beans

Important
CICS does not support entity beans directly. That is, entity beans cannot run
in a CICS EJB server. However, a session bean or program running in a CICS
EJB server can be a client of an entity bean running in a non-CICS EJB
server.

An entity bean:

v Is typically an object representation of business data, such as a customer order.
Typically, the data:

– Are maintained in a permanent data store, such as a database.

– Need to persist beyond the life of a client instance. Therefore, an entity bean
is relatively long-lived, compared to a session bean.

v Object can be accessed by more than one client at the same time. This is
possible because each instance of an entity bean is identified by a primary key,
which can be used to find it via the home interface.

v Can manage its own persistence (bean-managed persistence), or delegate the
task to its container (container-managed persistence).

If the bean manages its own persistence, the bean developer must implement
persistence operations—for example, JDBC or SQL calls—directly in the bean.

If the entity bean delegates persistence to the container, the latter manages the
persistent state transparently; the bean developer doesn’t need to code any
persistence operations within the bean.

v May or may not be transactional. If it’s transactional, all transaction functions are
performed implicitly by the EJB container and server. There are no transaction
demarcation statements within the bean code. Unlike session beans, an entity
bean is not permitted to manage its own OTS transactions. See “Managing
transactions” on page 17.

16 CICS Transaction Server: Release Guide

v Is recoverable—it survives a server crash.

Session beans and entity beans compared
Table 1 is a summary of the differences between entity and session beans.

Table 1. Comparison of session and entity beans

Session bean Entity bean

Represents a single conversation with a
client.

Typically, encapsulates an action or actions
to be taken on business data.

Typically, encapsulates persistent business
data—for example, a row in a database.

Is relatively short-lived. Is relatively long-lived.

Is created and used by a single client. May be shared by multiple clients.

Has no primary key. Has a primary key, which enables an
instance to be found and shared by more
than one client.

Typically, persists only for the life of the
conversation with the client. (However, may
choose to save information.)

Persists beyond the life of a client instance.
Persistence can be container-managed or
bean-managed.

Is not recoverable—if the EJB server fails, it
may be destroyed.

Is recoverable—it survives failures of the
EJB server.

May be stateful (that is, have a client-specific
state) or stateless (have no non-transient
state).

Is typically stateful.

May or may not be transactional. If
transactional, can manage its own OTS
transactions, or use container-managed
transactions.

A stateful session bean that manages its
own transactions can begin an OTS
transaction in one method and commit or roll
it back in a subsequent method.

A stateless session bean that manages its
own transactions and begins an OTS
transaction must commit (or roll back) the
transaction in the same method in which it
was started.

The state of a transactional, stateful session
bean is not automatically rolled back on
transaction rollback. In some cases, the bean
can use session synchronization to react to
syncpoint.

May or may not be transactional. Must use
the container-managed transaction model.

If transactional, its state is automatically
rolled back on transaction rollback.

Is not re-entrant. May be re-entrant.

Managing transactions
Clients can begin, commit, and roll back ACID transactions3 using an
implementation of the Java Transaction Service (JTS) or the CORBA Object
Transaction Service (OTS). These transactions are analogous to CICS distributed

3. Transactions possessing atomicity, consistency, isolation, and durability. Jim Gray and Andreas Reuter, Transaction Processing:
Concepts and Techniques, 1993.

Chapter 2. Introduction to Enterprise JavaBeans™ 17

units of work. We use the term OTS transaction to differentiate these transactions
from CICS transaction definitions (the ones with 4-character transaction identifiers)
and CICS transaction instances (which are sometimes loosely called tasks).

When a client calls an enterprise bean in the scope of an OTS transaction,
information about the transaction flows to the EJB server in an IIOP service
context, which is like an extra (hidden) parameter on the method request. The EJB
server uses this information if it needs to participate in the transaction. Whether the
method of an enterprise bean needs to run under a client’s OTS transaction (if
there is one) is determined by the setting of the transaction attribute specified in
the bean’s deployment descriptor. The method may run under the client’s OTS
transaction, under a separate OTS transaction which is created for the duration of
the method, or under no OTS transaction.

Entity beans must use container–managed OTS transactions. All transaction
functions are performed implicitly by the EJB container and server. There are no
transaction demarcation statements within the bean code.

Session beans can use either container-managed OTS transactions or
bean–managed OTS transactions. A session bean that uses bean–managed
transactions uses methods of the javax.transaction.UserTransaction interface to
demarcate transactions. A stateful session bean that manages its own transactions
can begin an OTS transaction in one method and commit or roll it back in a
subsequent method. A stateless session bean that manages its own transactions
and begins an OTS transaction must commit (or roll back) the transaction in the
same method.

At runtime, the EJB container implements transaction services according to the
setting of the transaction attribute specified in the bean’s deployment descriptor.
The possible settings of the transaction attribute are:

Mandatory
Indicates that the bean must always execute within the context of the caller’s
OTS transaction. If the caller does not have a transaction when it calls the
bean, the container throws a javax.transaction.TransactionRequiredException
exception and the request fails.

Never
Indicates that the bean must not be invoked within the context of an OTS
transaction. If a caller has an OTS transaction when it calls the bean, the
container throws a java.rmi.RemoteException exception and the request fails.

NotSupported
Indicates that the bean cannot execute within the context of an OTS
transaction. If a caller has an OTS transaction when it calls the bean, the
container suspends the transaction for the duration of the method call. It
resumes the suspended transaction when the method has completed. The
suspended transaction context of the client is not passed to resource managers
or enterprise bean objects that are invoked from the method.

Required
Indicates that the bean must execute within the context of an OTS transaction.
If a caller has an OTS transaction when it calls the bean, the method
participates in the caller’s transaction. If the caller does not have an OTS
transaction, the container starts a new OTS transaction for the method.

RequiresNew
Indicates that the bean must execute within the context of a new OTS

18 CICS Transaction Server: Release Guide

transaction. The container always starts a new OTS transaction for the method.
If the caller has an OTS transaction when it calls the bean, the container
suspends the caller’s transaction for the duration of the method call. The
suspended transaction context of the client is not passed to resource managers
or enterprise bean objects that are invoked from the method.

Supports
Indicates that the bean can run with or without a transaction context. If a caller
has an OTS transaction when it calls the bean, the method participates in the
caller’s transaction. If the caller does not have an OTS transaction, the method
runs without one.

Note: Enterprise bean methods always execute in a CICS task, under a CICS unit
of work. Even if an enterprise bean method executes under no OTS
transaction, any updates that the method makes to recoverable resources
are committed only at normal termination of the CICS task, and backed out if
there is a need to roll back.

The setting of a method’s transaction attribute determines whether or not the
CICS task under which the method executes makes its unit of work part of a
wider, distributed OTS transaction.

Accessing data
CICS enterprise beans can use a variety of methods to access data. The methods
available depend on the type of data to be accessed:

Relational data
To access relational data, an enterprise bean can use any of the following methods:

v Use a JCICS LINK command, or the CICS Connector for CICS TS, to link to a
program that uses Structured Query Language (SQL) commands to access the
data.

v Where a suitable driver is available, use Java Data Base Connectivity (JDBC) or
Structured Query Language for Java (SQLJ) calls to access the data directly. A
suitable JDBC driver is available for DB2®.

v Use Data Access beans developed using VisualAge for Java. Data Access
beans give you a fast, easy, non-programming way of building SQL queries. They
are described in “Using Data Access beans” on page 20.

v Use JavaBeans that use JDBC or SQLJ as the underlying access mechanism.
You can use any suitable Java integrated development environment (IDE) to
develop such JavaBeans.

Visual Age for Java provides the Enterprise Access Builder for Data to facilitate
building such JavaBeans. Use Data Access Builder if you are developing your
application outside the Visual Composition Editor, or if you need specialized
access to relational data.

v Use entity beans. CICS does not support entity beans running under CICS but
does support access to entity beans running on other EJB servers. A CICS
enterprise bean could, for example, use an entity bean running on WebSphere™

EE for OS/390 to access DB2 on OS/390.

DL/I data
To access DLI data, an enterprise bean can use a JCICS LINK command, or the
CICS Connector for CICS TS, to link to a program that issues EXEC DLI
commands to access the data.

Chapter 2. Introduction to Enterprise JavaBeans™ 19

VSAM data
To access VSAM data, an enterprise bean can use either of the following methods:

v Use a JCICS LINK command, or the CICS Connector for CICS TS, to link to a
program that issues CICS File Control commands to access the data.

v Use the JCICS File Control classes to access VSAM directly.

Notes:

1. All the above techniques can be used by both CICS enterprise beans and CICS
Java programs.

2. The same data can be accessed by CICS enterprise beans, CICS Java
programs, and (excluding CICS VSAM data) by non-CICS entity beans.

3. For all the above techniques except the use of entity beans, data integrity is
maintained by the CICS recovery manager. When entity beans are used, you
can use CICS and, for example, WebSphere EE global transactional support to
maintain data integrity.

4. You can encapsulate JCICS commands in a JavaBean. This makes it easier to
program the enterprise beans that use JCICS to access data.

5. The CICS Connector for CICS TS is described in “Chapter 4. The CICS
Connector for CICS TS” on page 65.

Using Data Access beans
To access relational databases, enterprise beans can use JDBC calls. However, the
recommended method is to use Data Access beans, which package the native
JDBC calls with extra function and make them more convenient to use. Data
Access beans are JavaBeans, not enterprise beans. They are a feature of
VisualAge for Java.

Three Data Access beans provide core function for accessing databases:
v Select bean
v Modify bean
v ProcedureCall bean

Additional beans provide user interfaces to invoke methods on the core beans and
to help display output from the database:
v CellSellector bean
v RowSelector bean
v ColumnSelector bean
v CellRangeSellector bean

All the beans mentioned are non-visual.

The Select, Modify, and ProcedureCall beans have properties that contain
connection aliases and SQL specifications. These properties allow you to connect to
relational databases and access data. You can also use parameterized SQL
statements with the Select, Modify, and ProcedureCall beans.

For detailed programming information about Data Access beans, see the softcopy
document Data Access, supplied with VisualAge for Java Enterprise Edition,
Version 3.

20 CICS Transaction Server: Release Guide

Important
There are special considerations for using Data Access beans in CICS. For
the latest information, ensure that you read the CICS-supplied “How to” file,
doc/HOWTO/Data-Access-Beans-HOWTO. This supplements and takes precedence
over the documentation of Data Access beans supplied with VisualAge for
Java Enterprise Edition.

Security
EJB security is concerned with authentication and access control.

Authentication
Authentication of EJB clients uses the TCP/IP secure sockets layer (SSL) protocol.
How to configure CICS to use SSL is described in the CICS Internet Guide.

Access control and EJB security roles
Access to enterprise beans is based on the concept of security roles. An EJB role
represents a type of user that should have a particular level of access to an
application. It maps to a group of users defined to your external security manager
(ESM).

The roles that are permitted to execute a particular enterprise bean or particular
methods of a bean are specified in the bean’s deployment descriptor.

Important
EJB security roles are not yet supported by CICS.

CICS transaction and resource security: You can use CICS transaction security
and resource security with EJB resources.

CICS transaction security applies to the CICS transactions associated with
enterprise bean methods—that is, the transactions named on EJB
REQUESTMODEL definitions.

CICS resource security applies to the CICS resources accessed by enterprise
beans (by means of, for example, JCICS).

User tasks
Typically, several people are involved in the development and deployment of
applications that use enterprise beans:
v The bean provider
v The application assembler
v The deployer
v The system administrator

Note: In smaller organizations, one person may be responsible for more than one
of these tasks.

The bean provider
The bean provider develops reusable enterprise beans that typically implement
business tasks or business entities.

Chapter 2. Introduction to Enterprise JavaBeans™ 21

The bean provider’s output is an ejb-jar file that contains one or more enterprise
beans. The bean provider is responsible for:
v The Java classes that implement an enterprise bean’s business methods.
v The definition of the bean’s remote and home interfaces.
v The bean’s deployment descriptor.

The deployment descriptor includes the structural information—for example, the
name of the enterprise bean class—of the enterprise bean and declares all the
bean’s external dependencies—for example, the names and types of the
resource managers that the enterprise bean uses.

The application assembler
The application assembler creates applications that use enterprise beans. He
combines enterprise beans and hand-written client code into a client/server
application. Although he must be familiar with the function provided by the
enterprise beans’ remote and home interfaces, he does not need to have any
knowledge of the enterprise beans’ implementation.

The input to the application assembler is one or more ejb-jar files produced by the
bean provider. His output is one or more ejb-jar files that contain the enterprise
beans, along with their application assembly instructions and customized
environment settings. He has inserted the application assembly instructions,
security roles, and environment values into the deployment descriptors.

The application assembler may also combine enterprise beans with other types of
application components—for example, JavaBeans—when assembling an
application.

Typically, the application assembly step occurs before the deployment of the
enterprise beans. However, sometimes assembly may be performed after the
deployment of all or some of the enterprise beans.

The deployer
The deployer takes one or more ejb-jar files produced by the application assembler
and deploys the enterprise beans contained in the ejb-jar files into a specific
CorbaServer in an EJB server.

The deployer must:

v Resolve all the external dependencies declared by the bean provider. For
example, he must ensure that all resource manager connection factories used by
the enterprise beans are present in the operational environment, and bind them
to the resource manager connection factory references declared in the
deployment descriptor.

v Follow the application assembly instructions defined by the application
assembler. For example, the deployer is responsible for mapping the security
roles defined by the application assembler to CICS user groups and external
security manager profiles. (EJB security roles are not supported in CICS TS for
z/OS Version 2.1.)

The deployment process is semi-automated. To perform his role, the deployer uses
a deployment tool. Deployment tools are provided by VisualAge for Java and by
CICS.

The deployer’s output are enterprise beans that have been customized for the
target operational environment, and deployed in one or more CorbaServers.

22 CICS Transaction Server: Release Guide

The system administrator
The system administrator is responsible for configuring and administering the CICS
regions that comprise the logical EJB server, together with their network
connections. He or she is also responsible for overseeing the well-being of the
deployed EJB applications at runtime.

Deploying enterprise beans
A desktop Java bean is developed, installed, and run on a workstation. An
enterprise bean, however, which will run on a server, requires an additional stage,
deployment, to prepare the bean for the runtime environment and install it into the
EJB server.

Enterprise beans are produced by the bean provider and customized by the
application assembler. They are supplied to the deployer in an ejb-jar file. This file
contains:

v The Java classes for one or more enterprise beans.

v A single deployment descriptor, written in XML, which describes the
characteristics of each of the enterprise beans, such as:
– Transaction attributes
– Environment properties
– Security levels
– Application assembly information.

Also required is CICS-specific information, such as resource definition requirements,
in either resource definition online (RDO) format (for DFHCSDUP) or CICSPlex SM
Business Application Services (BAS) format (for BATCHREP).

Here’s an outline of the deployment process:4

1. A deployment tool (such as the CICS JAR development tool, described in “The
CICS JAR development tool for EJB technology” on page 115) is used to
transform the ejb-jar file into a form suitable for deployment. The transformed
file contains the XML deployment descriptor and enterprise bean classes from
the ejb-jar file, plus additional classes generated in support of the EJB
container. The transformed file is stored as a deployed JAR file on the
hierarchical file system (HFS) used by z/OS.

2. CICS resource definitions are created on the CSD. Definitions are required for:
v The CorbaServer execution environment (CORBASERVER). (The same

CORBASERVER definition will be installed on each CICS AOR in the logical
EJB server.)

v Deployed JAR files (DJARs), each of which includes the HFS filename of a
deployed JAR file.

v TCP/IP services (for IIOP).
v Request models (to enable client IIOP requests to be processed correctly).

Note: “Setting up a logical EJB server” on page 27 contains more information
about these RDO definitions.

3. Security definitions are added to the external security manager (CICS TS for
z/OS Version 2.2 only). These specify which roles can execute particular beans
and methods, and which CICS user IDs are associated with each role.

4. The resource definitions on the CSD are installed in CICS. Installing a DJAR
definition causes CICS to:

4. This simplified description of the deployment process assumes that you’re using RDO rather than BAS.

Chapter 2. Introduction to Enterprise JavaBeans™ 23

v Copy the deployed JAR file (and the classes it contains) to a shelf directory
on HFS

v Read the deployed JAR from the shelf, parse its XML deployment descriptor,
and store the information it contains

5. Using SPI commands, a reference to the home interface class of each deployed
bean is published in an external namespace. The namespace is accessible to
clients through JNDI.

Figure 3 shows the deployment process.

Configuring CICS as an EJB server
A CICS EJB server contains the following basic components:

The listener
The job of the listener is to listen for (and respond to) incoming TCP/IP
connection requests. An IIOP listener is configured by a TCPIPSERVICE
resource definition to listen on a specific TCP/IP port and to attach an IIOP
request receiver to handle each connection.

Once an IIOP connection has been established between a client program and a
particular request receiver, all subsequent requests from the client program over
that connection flow to the same request receiver.

CSD

deploymentejb-jar
= dataflow

install write to shelfread

JNDI

HFS

deployed
JAR

development

enterprise
bean

publish

External
security
manager

namespace

CICS EJB Server

Figure 3. Deploying enterprise beans into a CICS EJB server. A deployment tool is used to perform code generation
on the ejb-jar file containing the bean classes. The transformed file is stored as a deployed JAR file on HFS. An RDO
definition of the deployed JAR file is created on the CSD and installed in CICS, together with other definitions for
TCP/IP services, request models, and the CorbaServer execution environment. Security definitions are created on the
external security manager.

Note: The picture shows an external security manager. EJB resource security—the checking of access to enterprise
beans and the CICS resources they use, based on EJB security roles—is not supported in CICS TS for z/OS
Version 2.1.

24 CICS Transaction Server: Release Guide

The request receiver
The request receiver analyzes the structured IIOP data. It passes the incoming
request to a request processor by means of a request stream, which is an
internal CICS routing mechanism. The object key in the request determines
whether the request must be sent to a new or an existing request processor.

If the request must be sent to a new request processor, a CICS TRANSID is
determined by comparing the request data with templates defined in
REQUESTMODEL resource definitions. (If no matching REQUESTMODEL
definition can be found, the default TRANSID, CIRP, is used.) The TRANSID
defines execution parameters that are used by the request processor.

The request processor
The request processor is a transaction instance that manages the execution of
the IIOP request. It:
v Locates the object identified by the request
v For an enterprise bean request, calls the container to process the bean

method
v For a request for a stateless CORBA object, the ORB typically processes the

request itself (although the transaction service may also be involved).

Logical servers — enterprise beans in a sysplex
You can implement a CICS EJB server in a single CICS region. However, in a
sysplex it’s likely that you’ll want to create a server consisting of multiple regions.
Using multiple regions makes failure of a single region less critical and enables you
to use workload balancing. A CICS logical EJB server consists of one or more
CICS regions configured to behave like a single EJB server.

Typically, a CICS logical EJB server consists of:

v A set of cloned listener regions defined by identical TCPIPSERVICE definitions
to listen for incoming IIOP requests.

v A set of cloned application-owning regions (AORs), each of which supports an
identical set of enterprise bean classes in an identically-defined CorbaServer.

Note: The listener regions and AORs can be separate or combined into
listener/AORs.

Workload balancing in a sysplex: Workload balancing is implemented at two
levels:

1. To balance client connections across the listener regions, you can use any of
the following methods:
v Connection optimization by means of dynamic Domain Name System (DNS)

registration. (Connection optimization is described in “Chapter 11. Domain
name system (DNS) connection optimization” on page 159.)

v IP routing.
v A combination of connection optimization and IP routing.

With connection optimization by means of dynamic DNS registration, for
example, multiple CICS regions are started to listen for IIOP requests on the
same port (using virtual IP addresses). Each client IIOP connection request
contains a generic host name and port number. The generic host name in each
connection request is resolved to a real IP address by MVS DNS and Workload
Management (WLM) services.

2. To balance OTS transactions across the AORs, you can use either of the
following:
v CICSPlex SM

Chapter 2. Introduction to Enterprise JavaBeans™ 25

v A customized version of the CICS distributed routing program, DFHDSRP.

Important
It is convenient to talk of balancing (or dynamically routing) OTS
transactions across AORs. Strictly speaking, however, what are
dynamically routed are method requests for enterprise beans and CORBA
stateless objects. There is a correlation between routing method requests
dynamically and routing OTS transactions dynamically: CICS invokes the
routing program for requests for methods that will run under a new OTS
transaction, but not for requests for methods that will run under an existing
OTS transaction—these it directs automatically to the AOR in which the
existing OTS transaction runs. However, because requests for methods
that will run under no OTS transaction can also be dynamically routed, the
correlation is not exact.

We must be clear about what we mean by new and existing OTS
transactions. For the purposes of this chapter:

a. By a new OTS transaction we mean an OTS transaction in which the
target logical server is not already participating, prior to the current
method call; not necessarily an OTS transaction that was started
immediately before the method call.

b. By an existing OTS transaction we mean an OTS transaction in which
the target logical server is already participating, prior to the current
method call; not simply an OTS transaction that was started some time
ago.

For example, if a client starts an OTS transaction, does some work, and
then calls a method on an enterprise bean with the Supports transaction
attribute, so far as the CICS EJB server is concerned this is a new OTS
transaction, because the server has not been called within this
transaction’s scope before. If the client then makes a second and third
method call to the same target object, before committing its OTS
transaction, these second and third calls occur within the scope of the
existing OTS transaction.

Figure 4 on page 27 shows a CICS logical EJB server. In this example, the listener
regions and AORs are in separate groups, connection optimization is used to
balance client connections across the listener regions, and distributed routing is
used to balance OTS transactions across the AORs.

26 CICS Transaction Server: Release Guide

Setting up a logical EJB server
In simplified form, the steps involved in setting up a CICS logical EJB server to
provide access to a specific enterprise bean are:

1. Create a set of cloned listener regions.

2. Create a set of cloned AORs. Each of the AORs must:
v Be set up to use JNDI
v Use the same JNDI initial context as the other AORs
v Be connected to all of the listener regions by MRO (not ISC).

3. Take the ejb-jar file and perform code generation on it to produce a deployed
JAR file on HFS.

4. Create the following resource definitions. You can create them on a CSD that is
shared by all the regions in the logical server, copy them to all the CSDs used
by the regions, or add them to a CICSPlex SM Resource Description that
applies to all the regions. Optionally, you can use the CICS-supplied deployment
tool to create some of these definitions.

v A TCPIPSERVICE.

v Some REQUESTMODEL definitions. These are only required if the default
TRANSID, CIRP, cannot be used.

The BEANNAME attribute of each REQUESTMODEL definition must “match”
(in a pattern-matching sense) the name of an enterprise bean in the
deployment descriptor in the deployed JAR file on HFS. The value of the
CORBASERVER attribute must be identical with the name of the
CorbaServer on the CORBASERVER definition.

v A CORBASERVER definition.

Hostname
resolution

SYSPLEX

Distributed
routing

Cloned
listener
regions

Dynamic
DNS

Cloned CICS AORs

Logical EJB server

Client

IIOP

Figure 4. A CICS logical EJB server. The logical server consists of a set of cloned listener regions and a set of cloned
AORs. In this example, connection optimization by means of dynamic DNS registration is used to balance client
connections across the listener regions. Distributed routing is used to balance OTS transactions across the AORs.

Chapter 2. Introduction to Enterprise JavaBeans™ 27

The 'server ORB' attributes of the CORBASERVER definition (HOST, SSL,
and PORT or SSLPORT) must match the corresponding attributes of the
TCPIPSERVICE definition (IPADDRESS or DNSGROUP, SSL, and
PORTNUMBER respectively). To clarify:

a. The value of the HOST option of the CORBASERVER definition must
match that of the IPADDRESS option of the TCPIPSERVICE definition.
However, if the TCPIPSERVICE specifies a value for DNSGROUP, the
HOST option of the CORBASERVER definition must specify a matching
generic host name.

b. If the CORBASERVER definition does not support the secure sockets
layer—SSL(NO)—the CorbaServer has only one, non-SSL, TCP/IP port.
Its PORT number must match the value of PORTNUMBER on the
TCPIPSERVICE definition.

c. If the CORBASERVER definition supports the secure sockets
layer—SSL(YES) or SSL(CLIENTCERT)—the CorbaServer has two
TCP/IP ports—one which supports the secure sockets layer and one
which does not. Either its SSLPORT number or its PORT number must
match the value of PORTNUMBER on the TCPIPSERVICE definition.
Alternatively, you can install a TCP/IP service on both ports (using two
TCPIPSERVICE definitions).

v A DJAR definition.

The HFSFILE attribute of the DJAR definition points to the deployed JAR file
on HFS. The CORBASERVER attribute matches the name of the
CorbaServer on the CORBASERVER definition.

v FILE definitions for the following files required by CICS:

The EJB directory, DFHEJDIR
is a file containing a request streams directory which must be shared
by all the regions (listeners and AORs) in the logical EJB server.
(Request streams are used in the distributed routing of method
requests for enterprise beans and CORBA stateless objects.) You
must define DFHEJDIR as recoverable.

The EJB object Store, DFHEJOS
is a file of stateful session beans that have been passivated. It must
be shared by all the AORs in the logical EJB server. You must define
it as non-recoverable.

To share DFHEJDIR and DFHEJOS across multiple regions, you could, for
instance, use any of the following methods:
– Define them as remote files in a file-owning region (FOR)
– Define them as coupling facility data tables
– Use VSAM RLS.

There are sample FILE definitions for DFHEJDIR and DFHEJOS in the
CICS-supplied RDO group, DFHEJVS. There are sample coupling facility
FILE definitions for DFHEJDIR and DFHEJOS in the CICS-supplied RDO
group, DFHEJCF. There are sample VSAM RLS FILE definitions for
DFHEJDIR and DFHEJOS in the CICS-supplied RDO group, DFHEJVR.
(DFHEJVS, DFHEJCF, and DFHEJVR are not included in the default CICS
startup group list, DFHLIST.)

Note: For clarity’s sake, we’re assuming that there’s only one CorbaServer in
the logical server, and that all the enterprise beans you want to deploy
are in a single ejb-jar file. To create another CorbaServer, you’ll need a

28 CICS Transaction Server: Release Guide

second CORBASERVER definition and another TCPIPSERVICE
definition. To deploy beans in other ejb-jar files, you’ll need further DJAR
and REQUESTMODEL definitions.

5. Define the underlying VSAM data sets for DFHEJDIR and DFHEJOS. CICS
supplies sample JCL to help you do this, in the DFHDEFDS member of the
SDFHINST library.

6. On each of the listener regions, install:
v The TCPIPSERVICE definition
v The REQUESTMODEL definitions
v The file definition for DFHEJDIR

On each of the AORs, install:
v The REQUESTMODEL definitions
v The CORBASERVER definition
v The DJAR definition
v The file definitions for DFHEJDIR and DFHEJOS

7. Issue a PERFORM CORBASERVER(CorbaServer_name) PUBLISH command
on at least one of the AORs. This binds the homes of the enterprise beans into
the JNDI namespace. The command can be issued using EXEC CICS, the
CEMT master terminal transaction, or via a CICSPlex SM EUI or WUI View.

Figure 5 shows the RDO definitions required to define a CICS logical EJB server. It
shows which definitions are required in the listener regions, which in the AORs, and
which in both.

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

TCPIPSERVICEs

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

Figure 5. Resource definitions in a CICS logical EJB server. The picture shows which definitions are required in the
listener regions, which in the AORs, and which in both.

Chapter 2. Introduction to Enterprise JavaBeans™ 29

What can a client do with a bean?
This section contains example code fragments that illustrate how a client program
can use an enterprise bean.

Get a reference to the bean’s home
In order to do anything with the bean, the client must obtain a reference to the
bean’s home interface. To do this, it looks up a well-known name via JNDI:
// Obtain a JNDI initial context
Context initContext = new InitialContext();

// Look up the home interface of the bean
Object accountBeanHome = initContext.lookup("JNDI_prefix/AccountBean");
// where:
// 'JNDI_prefix/' is the JNDI prefix on the CORBASERVER definition
// 'AccountBean' is the name of the bean in the XML deployment descriptor

// Convert to the correct type
AccountHome accountHome = (AccountHome)

PortableRemoteObject.narrow(accountBeanHome,AccountHome.class);

Use the home interface
The client can use the bean’s home interface to:
v Create a new instance of the bean
v Delete an instance of the bean

For example:
// Create two bean instances
Account anAccount = accountHome.create();
Account anotherAccount = accountHome.create("12345");

// Remove a bean instance
accountHome.remove("12345");

Use the remote interface
The client can use the bean’s remote interface to:
v Invoke the bean’s methods
v Delete the bean

For example:
// Use the bean
anAccount.deposit(1000000);
// Remove it
anAccount.remove();

What can a bean do?
An enterprise bean benefits from many services—such as lifecycle management
and security—that are provided implicitly by the EJB container, based on settings in
the deployment descriptor. This leaves the bean provider free to concentrate on the
bean’s business logic. This section looks at some of the things a bean can do.

Look up JNDI entries
A bean can use JNDI calls to retrieve:
v References to resources
v Environment variables
v References to other beans.

Access resource managers
A bean can:
v Obtain a connection to a resource manager
v Use the resources of the resource manager

30 CICS Transaction Server: Release Guide

v Close the connection.

Link to CICS programs
A bean can use JCICS or the CICS Connector for CICS TS to link to a CICS
program, that may be written in any of the CICS-supported languages and be
either local or remote. The bean provider can use the CICS Connector for CICS
TS to build beans that make use of the power of existing (non-Java) CICS
programs.

The CICS Connector for CICS TS is described in “Chapter 4. The CICS
Connector for CICS TS” on page 65.

Access files
A bean can use JCICS to read and write to files.

Call other beans
A bean can:
v Obtain references to the home and remote interfaces of other bean objects
v Invoke the methods of another bean object.

A bean can act as the client of another bean object, as the server of another
bean object, or as both.

Manage transactions
Optionally, a session bean can manage its own OTS transactions, rather than
using container-managed transactions.

Benefits
Some of the benefits of using enterprise beans are:

Component portability
The EJB architecture provides a simple, elegant component container model.
Java server components can be developed once and deployed in any
EJB-compliant server.

Architecture independence
The EJB architecture is independent of any specific platform, proprietary
protocol, or middleware infrastructure. Applications developed for one platform
can be redeployed on other platforms.

Developer productivity
The EJB architecture improves the productivity of application developers by
standardizing and automating the use of complex infrastructure services such
as transaction management and security checking. Developers can create
complex applications by focusing on business logic rather than environmental
and transactional issues.

Customization
Enterprise bean applications can be customized without access to the source
code. Application behavior and runtime settings are defined through attributes
that can be changed when the enterprise bean is deployed.

Multitier technology
The EJB architecture overlays existing infrastructure services.

Versatility and scalability
The EJB architecture can be used for small-scale or large-scale business
transactions. As processing requirements grow, the enterprise beans can be
migrated to more powerful operating environments.

Chapter 2. Introduction to Enterprise JavaBeans™ 31

In addition to these general benefits of using EJB technology, there are specific
benefits of using enterprise beans with CICS. For example:

Superior workload management
You can balance client connections across a set of cloned listener regions.

You can use CICSPlex SM or the CICS distributed routing program to balance
OTS transactions across a set of cloned AORs.

Superior transaction management
Enterprise beans in a CICS EJB server benefit from CICS transaction
management services—for example:
v Shunting
v System log management
v Performance optimizations
v Runaway detection
v Deadlock detection
v TCLASS management
v Monitoring and statistics

Access to CICS resources
You can, for example, use JCICS or the CICS Connector for CICS TS to build
enterprise beans that make use of the power of existing (non-Java) CICS
programs. The developer of a Java client application can use your server
components to access CICS—without needing to know anything about CICS
programming. See “Chapter 4. The CICS Connector for CICS TS” on page 65.

Requirements

Hardware
There are no specific hardware requirements for enterprise beans, over and above
those for CICS Transaction Server for z/OS, Version 2 Release 1 itself.

Software
The software requirements for enterprise beans are:

v IBM Developer Kit for OS/390, Java 2 Technology Edition

v A Corba Object Services (COS) Naming Directory Server that supports the Java
Naming and Directory Interface (JNDI) Version 1.2. WebSphere Application
Server Advanced Edition is shipped with CICS for this purpose.

Note: The JNDI API provides directory and naming function for Java
applications. It enables a client to locate an enterprise bean. The JNDI is
mapped to an external Naming Directory Server. The latter must be a
COS Naming Directory Server, which is most conveniently obtained by
use of WebSphere Application Server Advanced Edition running on an
external Windows NT® machine.

v DB2 with Java Data Base Connectivity (JDBC) Version 1.2 extensions.

Changes to CICS externals
There are changes to a number of CICS external interfaces in support of enterprise
beans. These are:
v “Changes to system initialization” on page 33
v “Changes to system definition” on page 33
v “Changes to resource definition” on page 34

32 CICS Transaction Server: Release Guide

v “Changes to the application programming interface” on page 48
v “Changes to the system programming interface” on page 48
v “Changes to CICS supplied transactions” on page 52
v “Changes to global user exits” on page 53
v “Changes to the exit programming interface (XPI)” on page 53
v “Changes to user-replaceable programs” on page 54
v “Changes to monitoring” on page 54
v “Changes to statistics” on page 54
v “Changes to problem determination” on page 54
v “Changes to sample programs” on page 56

Changes to system initialization

New system initialization parameters
There is one new system initialization parameter:

KEYRING=key_ring_name
Specifies the name of a key ring define in the external security manager’s
database, and which contains the keys and X.509 certificates used by CICS
support for the secure sockets layer.

Changes to existing system initialization parameters
Support for enterprise beans introduces several new CICS domains. Consequently,
there are new codes for use with the STNTRxx and SPCTRxx system initialization
parameters used to set the levels of standard and special tracing for selected CICS
components. Table 2 shows the new component codes and the domains to which
they relate.

Table 2. CICS component names and abbreviations

Code Component name

EJ Enterprise Java domain

II IIOP domain

OT Object Transaction Service domain

RZ Request streams domain

SJ CICS JVM domain

Obsolete system initialization parameters
The following system initialization parameter is obsolete:

KEYFILE=key-ring-path-name
In CICS TS 1.3, KEYFILE specified the name of an HFS file containing keys
and certificates managed by the gskkyman utility. These keys and certificates
are now managed by the external security manager, and defined by a
RACDCERT ADDRING command, and defined to CICS by the KEYRING
system initialization parameter.

Changes to system definition
There are several changes to CICS system definition to enable EJB support.

Cloned CICS regions
CICS supports the cloning of the listener regions and application-owning regions
that comprise the logical EJB server.

You clone regions by specifying, with some key exceptions, the same system
initialization parameters and, through the system initialization parameters, specify

Chapter 2. Introduction to Enterprise JavaBeans™ 33

the same resource definitions. The only attributes of cloned regions that are
different are their identifiers, specified on the APPLID, SYSIDNT, and MNSUBSYS
system initialization parameters.

VSAM data sets
There are two new system data sets required, with DDNAMES of DFHEJDIR and
DFHEJOS. Unless these CICS files reside in a coupling facility (in which case it is
not necessary to define them as VSAM data sets), define the underlying VSAM
data sets that relate to these CICS files. (see “File definitions” on page 47).

The DFHDEFDS member of the SDFHINST library contains two sets of IDCAMS
DEFINE statements to define the DFHEJDIR and DFHEJOS clusters. The data set
names used in these definitions are tailored by the parameters you specify on the
DFHISTAR installation job. You can edit these jobs further after installation (for
example, to vary the size of the initial primary allocation).

Shelf directories
You must define one or more shelf directories on HFS. A shelf is primarily used to
hold JARs—see the description of the SHELF option of the CEDA DEFINE
CORBASERVER command.

CICS regions into which CORBASERVER definitions are installed must have full
permissions to the shelf directory—read, write, and execute.

Changes to resource definition
Support for enterprise beans introduces some new RDO objects; and there are
changes to some existing RDO objects.

New RDO objects
Two new RDO objects are introduced: CORBASERVER and DJAR.

CORBASERVER resource definition: Use CORBASERVER to define an
execution environment for enterprise beans and stateless CORBA objects (a
CorbaServer).

An identical CORBASERVER definition must be installed in each of the (one or
more) application-owning regions (AORs) that form a logical EJB/CORBA server for
workload balancing.

If you are not using load balancing, you should not define and install
CORBASERVER definitions with the same name (but different attributes) in different
CICS regions, as only the first PERFORM CORBASERVER PUBLISH command
will register an entry with the nameserver for the CORBASERVER name.

The definition’s 'Server ORB' attributes (HOST, SSL, PORT, and SSLPORT) are
included in Interoperable Object References (IORs) exported from this logical
server. They must match the corresponding attributes (IPADDRESS or DNSGROUP,
SSL, and PORTNUMBER) of an IIOP TCPIPSERVICE definition installed in each of
the (one or more) listener regions of the logical EJB/CORBA server. To clarify:

1. The value of the HOST option of the CORBASERVER definition must match
that of the IPADDRESS option of the TCPIPSERVICE definition. However, if the
TCPIPSERVICE specifies a value for DNSGROUP, the HOST option of the
CORBASERVER definition must specify a matching generic host name.

34 CICS Transaction Server: Release Guide

2. If the CORBASERVER definition does not support the secure sockets
layer—SSL(NO)—the CorbaServer has only one, non-SSL, TCP/IP port. Its
PORT number must match the value of PORTNUMBER on the TCPIPSERVICE
definition.

3. If the CORBASERVER definition supports the secure sockets layer—SSL(YES)
or SSL(CLIENTCERT)—the CorbaServer has two TCP/IP ports—one which
supports the secure sockets layer and one which does not. Either its SSLPORT
number or its PORT number must match the value of PORTNUMBER on the
TCPIPSERVICE definition. Alternatively, you can install a TCP/IP service on
both ports.

See also the descriptions of the PORT and SSLPORT options.

The definition’s Client ORB attributes are used when making outbound method
requests on objects in remote EJB or CORBA servers.

Notes:

1. Typically, for enterprise beans, CORBASERVER definitions are created by a
deployment tool, as part of the bean deployment process. Usually, you do not
have to code them by hand.

2. You can install more than one CORBASERVER definition in the same CICS
region.

3. For performance reasons, CICS installs CORBASERVER definitions in two
stages. On receipt of an install request, CICS puts the resource into a pending
state. Subsequently, possibly after CICS initialization has ended, CICS
completes the installation of any pending resources. If this secondary installation
stage (which involves clearing the HFS shelf directory used to store copies of
JAR files used by the CorbaServer) fails, the resource becomes unusable. The
STATE option of the INQUIRE CORBASERVER command returns the current
state of the CorbaServer.

4. To update a CORBASERVER definition—that is, to replace an existing definition
by installing another of the same name—you must first discard the existing
definition.

Figure 6 on page 36 shows the CEDA panel for DEFINE CORBASERVER.

Chapter 2. Introduction to Enterprise JavaBeans™ 35

Options:

CERTIFICATE(label)
specifies the 1–32 character label of the certificate in the key ring that is to be
used (as a client certificate) in the SSL handshake for outbound IIOP
connections. There are no restrictions on the characters that you can use.
However, if you use parentheses, ensure that for each left parenthesis there is
a matching right one.

If this option is not specified, the default certificate for the key ring is used.

Notes:

1. If the specified label does not match that of a certificate in the key ring, the
CORBASERVER definition cannot be installed.

2. The distinguished name within the specified certificate provides inputs to the
distinguished name user-replaceable program, DFHEJDNX.

CORBASERVER(name)
specifies the 1-4 character name of the CorbaServer. The acceptable
characters are A-Z a-z 0-9. Do not use names beginning with DFH, because
these characters are reserved for use by CICS.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
DESCRIPTION text can be up to 58 characters in length. There are no
restrictions on the characters that you can use. However, if you use
parentheses, ensure that for each left parenthesis there is a matching right one.
For each single apostrophe in the text, code two apostrophes.

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

CorbaServer :
Group :
Description ==>
Jndiprefix ==>

==>
==>
==>
==>

SEssbeantime ==> 00, 01, 00 0-99,0-23,0-59
SHelf ==> /var/cicsts/

==>
==>
==>
==>

Server ORB attributes
Host ==>

==>
==>
==>
==>

Port ==> 1-65535
SSL ==> No Yes | No | Clientcert
SSLPort ==> 1-65535

Client ORB attributes
CErtificate ==>

Figure 6. THE CEDA DEFINE CORBASERVER panel

36 CICS Transaction Server: Release Guide

The GROUP name can be up to eight characters in length. The characters
allowed are A-Z 0-9 @ # and $. Lowercase characters are treated as
uppercase characters. Do not use group names beginning with DFH, because
these characters are reserved for use by CICS.

HOST(value)
specifies the TCP/IP host name, or a string containing the dotted-decimal
TCP/IP address, of this logical EJB/CORBA server.

The host name is included in Interoperable Object References (IORs) exported
for objects in this logical server. Clients use this host name to access the CICS
listener regions.

If you are using connection optimization by means of dynamic DNS registration,
to balance client connections across the listener regions of your logical EJB
server, specify the generic host name quoted by client connection requests.
(The generic host name is the value of the DNSGROUP attribute of the
TCPIPSERVICE definition—see the description of the TCPIPSERVICE resource
definition.)

JNDIPREFIX(prefix)
specifies a prefix of up to 255 characters to be used at runtime when publishing
enterprise beans to the Java Naming and Directory Interface (JNDI). The
acceptable characters are A-Z a-z 0-9 . _ /.

If this option is not specified, no prefix is added when publishing beans to JNDI.

PORT(number)
specifies the TCP/IP port number to be used for non-SSL communication to this
logical EJB/CORBA server. The port number must be in the range 1–65535.
The default is 00683.

You must not specify the same port number for PORT and SSLPORT.

If you install a TCP/IP service on this port, the TCPIPSERVICE definition must
specify SSL(NO).

SESSBEANTIME({00,00,00|00,00,10|dd,hh,mm})
specifies, in days, hours, and minutes, the period of inactivity after which a
session bean may be discarded by CICS.

00,00,00
Session beans will not be timed out.

00,00,10
Session beans may be discarded after ten minutes of inactivity. This is the
default value.

dd,hh,mm
Session beans may be discarded after the specified period of inactivity. The
maximum value you can specify is 99,23,59—99 days, 23 hours, and 59
minutes.

SHELF(directoryname)
specifies the 1–255 character fully-qualified name of a directory (a shelf,
primarily for JARs) on HFS. The acceptable characters are A-Z a-z 0-9 . _ /.
The name is case-sensitive.

CICS regions into which the CORBASERVER definition is installed must have
full permissions to the shelf directory—read, write, and execute.

A single shelf can be shared by multiple CICS regions and by multiple
CORBASERVER definitions. Each CICS region uses a separate subdirectory of

Chapter 2. Introduction to Enterprise JavaBeans™ 37

the shelf directory to keep its files separate from those of other CICS regions.
The subdirectories for CORBASERVER definitions are contained within the
subdirectories of the CICS regions into which they are installed. After a CICS
region performs a cold or initial start, it deletes its subdirectories from the shelf
before trying to use the shelf.

You should not modify the contents of a shelf that is referred to by an installed
CORBASERVER definition. If you do, the effects are unpredictable.

SSL({CLIENTCERT|NO|YES})
specifies the secure sockets layer (SSL) type for this logical EJB/CORBA
server:

CLIENTCERT
SSL is used and authentication must be performed using a client certificate.
You must specify a value for SSLPORT.

If you install a TCP/IP service on the SSL port, the TCPIPSERVICE
definition must specify SSL(CLIENTAUTH) and
AUTHENTICATE(CERTIFICATE). (This means that the client is required to
send an SSL certificate which maps to an external security manager
userid.)

NO
SSL is not used. This CorbaServer does not have an SSL port. This is the
default.

YES
SSL is used. You must specify a value for SSLPORT.

If you install a TCP/IP service on the SSL port, the TCPIPSERVICE
definition must be specified in one of the following ways:

1. SSL(CLIENTAUTH) and AUTHENTICATE(NO). The client is asked for
an SSL certificate and, if it sends one, CICS uses any userid configured
for it.

2. SSL(YES) and AUTHENTICATE(NO). SSL is used, but the client is not
asked for an SSL certificate.

SSLPORT(number)
specifies the TCP/IP port number to be used for SSL communication to this
logical EJB/CORBA server. The port number must be in the range 1–65535.

If SSL is NO (the default), the value of this option is ignored.

You must not specify the same port number for PORT and SSLPORT.

DJAR resource definition: Use DJAR to define a deployed JAR file. A deployed
JAR file is an ejb-jar file, containing enterprise beans, on which code generation
has been performed and which has been stored on the hierarchical file system
(HFS) used by z/OS. When you install the DJAR definition, CICS copies the
deployed JAR file (specified by HFSFILE) into a subdirectory of the HFS shelf
directory of the specified CORBASERVER.

An identical DJAR definition must be installed in each of the (one or more)
application-owning regions (AORs) of the logical EJB server.

Notes:

1. Typically, DJAR definitions are created by a deployment tool, as part of the
bean deployment process. Usually, you do not have to code them by hand.

38 CICS Transaction Server: Release Guide

2. Installation of the DJAR fails if the deployed JAR file contains a bean with the
same name as a bean which is already installed in the specified
CORBASERVER.

3. For performance reasons, CICS installs DJAR definitions in two stages. On
receipt of an install request, CICS puts the resource into a pending state.
Subsequently, possibly after CICS initialization has ended, CICS completes the
installation of any pending resources. If this secondary installation stage (which
involves copying the deployed JAR file to the HFS shelf directory and parsing
the information it contains) fails, the resource becomes unusable. The STATE
option of the INQUIRE DJAR command returns the current state of the
deployed JAR file.

4. To update a DJAR definition—that is, to replace an existing definition by
installing another of the same name—you must first discard the existing
definition.

Figure 7 shows the CEDA panel for DEFINE DJAR.

Options:

CORBASERVER(name)
specifies the 1-4 character name of the CorbaServer in which this DJAR is to
be installed. The acceptable characters are A-Z a-z 0-9.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
DESCRIPTION text can be up to 58 characters in length. There are no
restrictions on the characters that you can use. However, if you use
parentheses, ensure that for each left parenthesis there is a matching right one.
For each single apostrophe in the text, code two apostrophes.

DJAR(name)
specifies the 1-8 character name of this DJAR. The acceptable characters are
A-Z a-z 0-9 $ @ #.

Do not use DJAR names beginning with DFH, because these characters are
reserved for use by CICS.

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

The GROUP name can be up to eight characters in length. The characters
allowed are A-Z 0-9 @ # and $. Lowercase characters are treated as
uppercase characters. Do not use group names beginning with DFH, because
these characters are reserved for use by CICS.

DJAR :
Group :
Description ==>
CorbaServer ==>
Hfsfile ==>

==>
==>
==>

Figure 7. The CEDA DEFINE DJAR panel

Chapter 2. Introduction to Enterprise JavaBeans™ 39

HFSFILE(filename)
specifies the 1-255 character fully-qualified file name of the deployed JAR file
on HFS. The acceptable characters are A-Z a-z 0-9 . _ /. The name is
case-sensitive.

Changes to existing RDO objects
The following existing RDO objects have been changed to support enterprise
beans:

v PROFILE

v REQUESTMODEL

v TCPIPSERVICE

v TRANSACTION

PROFILE: The meaning of the RTIMOUT option has been modified:

RTIMOUT({NO|value})
specifies the time-out value for:

1. The terminal read time-out feature. If no terminal input is received within the
specified interval, the task is terminated and receives an AKCT or AZCT
abend.

2. IIOP request processor tasks that are waiting for method requests. If no
method request is received within the specified interval, the task is
terminated and receives an AIIT abend.

(Note that if a value is specified and you wish to let it default to NO, you must
completely delete the value previously specified.)

RTIMOUT has no effect for MRO or basic (unmapped) APPC connections.

NO
Neither terminal reads nor IIOP request processor tasks are timed out.

value
This is an interval (MMSS for minutes and seconds) after which the task is
terminated if no input has been received. The maximum value that can be
specified is 70 minutes. The value specified in this option is rounded up to
units of 16.78 seconds. Thus, the minimum value (after rounding-up) is
16.78 seconds.

REQUESTMODEL definition: A REQUESTMODEL resource definition provides
the relationship between an Internet Inter-ORB Protocol (IIOP) inbound request and
the CICS transaction that is to be initiated.

IIOP inbound requests may be:
v Method requests for enterprise beans
v Method requests for CORBA stateless objects

The inbound IIOP request is formatted according to CORBA standards; it does not
specify a CICS transaction name explicitly. REQUESTMODEL definitions define
templates that are compared with the inbound IIOP message to identify the type of
request. CICS uses the pattern-matching options (CORBASERVER, TYPE, EJB
PARAMETERS, CORBA PARAMETERS, and COMMON PARAMETERS) of the
REQUESTMODELs to select the REQUESTMODEL that most closely matches the
request.

40 CICS Transaction Server: Release Guide

The TRANSID attribute of the selected REQUESTMODEL specifies the name of a
CICS transaction, which associates the IIOP request with a set of execution
characteristics such as security, priority, and monitoring data.

For an enterprise bean, a matching RequestModel may be specified for:
v Each method in the bean’s remote interface (including methods inherited from

the EJBObject interface)
v Each method in the bean’s home interface (including methods inherited from the

EJBHome interface)

For a CORBA stateless object, a matching RequestModel may be specified for each
of the object’s public methods.

Note: You can use generic values to define RequestModels that match multiple
objects, multiple methods, or both.

Figure 8 shows the CEDA panel for DEFINE REQUESTMODEL.

The following fields may contain generic values consisting of zero or more
characters followed by an asterisk (*):
v CORBASERVER
v BEANNAME
v INTERFACE
v MODULE
v OPERATION

Requestmodel :
Group :
Description ==>
Corbaserver ==> *
TYpe ==> Generic Corba | Ejb | Generic

EJB PARAMETERS
Beanname ==> *

==>
==>
==>

INTFacetype ==> Both Both | Home | Remote
CORBA PARAMETERS
Module ==> *

==>
==>
==>

INTErface ==> *
==>
==>
==>

COMMON PARAMETERS
OPeration ==> *

==>
==>
==>

TRANSACTION ATTRIBUTES
TRansid ==> CIRP

CICS TS V1R3 ATTRIBUTES
OMGModule :
OMGInterface :
OMGOperation :

Figure 8. The CEDA DEFINE REQUESTMODEL panel

Chapter 2. Introduction to Enterprise JavaBeans™ 41

The value of the TYPE option determines which, if any, of the EJB PARAMETERS,
CORBA PARAMETERS, and COMMON PARAMETERS are valid:

v If TYPE is EJB, only the EJB and COMMON PARAMETERS are valid and the
CORBA PARAMETERS must be blank.

v If TYPE is CORBA, only the CORBA and COMMON PARAMETERS are valid
and the EJB PARAMETERS must be blank.

v If TYPE is BOTH, the EJB, CORBA, and COMMON PARAMETERS are all valid.

If one of the valid fields is generic (or BOTH in the case of INTFACETYPE), all the
valid fields further down the panel (except TRANSID) must be '*' (or BOTH in the
case of INTFACETYPE).

If a request is received that matches several REQUESTMODEL definitions, CICS
uses the definition most specific to the request. (Where generic values are used,
the longest generic pattern results in the most specific match.)

Notes:

1. You cannot install a REQUESTMODEL definition which has identical
pattern-matching options (CORBASERVER, TYPE, EJB PARAMETERS,
CORBA PARAMETERS, and COMMON PARAMETERS) as an installed
REQUESTMODEL with a different name. If you try, the install is rejected and a
message is written to CSMT indicating the name of the conflicting
REQUESTMODEL.

2. The CORBA PARAMETERS must equal the most derived interface implemented
by the objects they are required to match. Matching according to the inheritance
hierarchy of an object is not supported.

Options:

BEANNAME(name)
specifies a (possibly generic) bean name, of up to 240 characters, matching the
name of the enterprise bean in the XML deployment descriptor. The acceptable
characters are A-Z a-z 0-9 _ and accented alphabetic characters. The name is
case-sensitive.

If a generic BEANNAME is specified, INTFACETYPE must be BOTH and
OPERATION must be '*'.

For CORBA REQUESTMODELs—that is, if TYPE is CORBA—this field should
be blank.

CORBASERVER(name)
specifies the (possibly generic) name of the destination CORBASERVER for
this REQUESTMODEL. The name can be up to 4 characters in length. The
acceptable characters are A-Z a-z 0-9 and (but only at the end) *.

If a generic CORBASERVER is specified, BEANNAME, the CORBA
parameters, and the common parameters must all be asterisk (*) or blank;
INTFACETYPE must be BOTH or blank.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
DESCRIPTION text can be up to 58 characters in length. There are no
restrictions on the characters that you can use. However, if you use
parentheses, ensure that for each left parenthesis there is a matching right one.
For each single apostrophe in the text, code two apostrophes.

42 CICS Transaction Server: Release Guide

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

The GROUP name can be up to eight characters in length. The characters
allowed are A-Z 0-9 @ # and $. Lowercase characters are treated as
uppercase characters. Do not use group names beginning with DFH, because
these characters are reserved for use by CICS.

INTERFACE(text)
specifies a (possibly generic) name, of up to 255 characters, matching the IDL
interface name. The acceptable characters are A-Z a-z 0-9 _ and accented
alphabetic characters. Case is significant and should match the original Java or
IDL source. However, to comply with CORBA, installation of
REQUESTMODELS that specify INTERFACE with values differing only in case
from previously installed definitions, will be rejected.

If a generic INTERFACE is specified, OPERATION must be '*'.

For EJB REQUESTMODELs—that is, if TYPE is EJB—this field should be
blank.

INTFACETYPE({BOTH|HOME|REMOTE})
specifies the Java interface type for this REQUESTMODEL:

BOTH
matches either the home or remote interface for the bean. OPERATION
must be '*'.

HOME
specifies that this is the home interface for the bean.

REMOTE
specifies that this is the remote interface for the bean.

For CORBA REQUESTMODELs—that is, if TYPE is CORBA—this field should
be blank.

MODULE(text)
specifies a (possibly generic) name, of up to 255 characters, matching the IDL
module name (which defines the name scope of the OMG interface and
operation). The acceptable characters are A-Z a-z 0-9 _ : and accented
alphabetic characters. Case is significant and should match the original Java or
IDL source. However, to comply with CORBA, installation of
REQUESTMODELS that specify MODULE with values differing only in case
from previously installed definitions, will be rejected.

If a generic MODULE is specified, INTERFACE and OPERATION must be '*'.

To indicate the default package, leave this field blank and specify a non-blank
(but possibly generic) INTERFACE.

For EJB REQUESTMODELs—that is, if TYPE is EJB—this field should be
blank.

OMGINTERFACE(text)
This attribute is obsolete, but is supported to provide CSD file compatibility with
CICS TS 1.3.

OMGMODULE(text)
This attribute is obsolete, but is supported to provide CSD file compatibility with
CICS TS 1.3.

Chapter 2. Introduction to Enterprise JavaBeans™ 43

OMGOPERATION(text)
This attribute is obsolete, but is supported to provide CSD file compatibility with
CICS TS 1.3.

OPERATION(text)
specifies a (possibly generic) name, of up to 255 characters, matching the IDL
operation or bean method name. The acceptable characters are A-Z a-z 0-9 _
and accented alphabetic characters. Case is significant and should match the
original Java or IDL source. However, to comply with CORBA, installation of
REQUESTMODELS that specify OPERATION with values differing only in case
from previously installed definitions, will be rejected.

For information about how to specify operations of overloaded methods, see the
Java to IDL Language Mapping Specification, published by the Object
Management Group (OMG), and available from www.omg.org.

REQUESTMODEL(name)
specifies the name of this REQUESTMODEL definition. The name can be up to
8 characters in length. The acceptable characters are A-Z a-z 0-9 $ @ #.

TRANSID(name)
defines the 4-character name of the CICS transaction to be used when a new
request processor transaction instance is required to process a method request
matching the specification of the REQUESTMODEL.

The transaction definition must have as its initial program a JVM program
whose JVMClass is com.ibm.cics.iiop.RequestProcessor. It must be installed in
all the AORs of the EJB/CORBA server; it need not be installed in listener
regions that are not also AORs.

TYPE({BOTH|CORBA|EJB})
specifies the type of REQUESTMODEL:

BOTH
matches both enterprise bean and CORBA requests. BEANNAME, the
CORBA parameters, and the common parameters must all be asterisk (*).
INTFACETYPE must be BOTH.

CORBA
matches CORBA requests as specified by the CORBA parameters. The
EJB parameters must be blank.

EJB
matches enterprise bean requests as specified by the EJB parameters. The
CORBA parameters must be blank.

Examples: The following screen shows an example of an enterprise bean-specific
REQUESTMODEL definition.

Note: The transaction definition for EJHE should be copied from that of CIRP. Any
attributes of the transaction definition can be changed except the program
name, which must be that of a JVM program whose JVMClass is
com.ibm.cics.iiop.RequestProcessor.

44 CICS Transaction Server: Release Guide

Requestmodel : DFH$EJB
Group : DFH$EJB
Description ==> EJB HelloWorld sample
CorbaServer ==> EJC1
TYpe ==> Ejb Ejb | Corba | Both
EJB PARAMETERS
Beanname ==> HelloWorld

==>
==>
==>

INTFacetype ==> Both Home | Remote | Both
CORBA PARAMETERS
OMGModule :
Module ==>

==>
==>
==>

OMGInterface :
INTErface ==>

==>
==>
==>

OMGOperation :
COMMON PARAMETERS
OPeration ==> *

==>
==>
==>

TRANSACTION ATTRIBUTES
Transid ==> EJHE

The next screen shows an example of a stateless CORBA REQUESTMODEL.

Note: The transaction definition for IIHE should be copied from that of CIRP. Any
attributes of the transaction definition can be changed except the program
name, which must be that of a JVM program whose JVMClass is
com.ibm.cics.iiop.RequestProcessor.

Requestmodel : DFH$IIRH
Group : DFH$IIOP
Description ==> Hello world CORBA java server sample
CorbaServer ==> IIOP
TYpe ==> Corba Ejb | Corba | Both
EJB PARAMETERS
Beanname ==>

==>
==>
==>

INTFacetype ==> Home | Remote | Both
CORBA PARAMETERS
OMGModule :
Module ==> hello

==>
==>
==>

OMGInterface :
INTErface ==> HelloWorld

==>
==>
==>

OMGOperation :
COMMON PARAMETERS
OPeration ==> *

==>
==>
==>

TRANSACTION ATTRIBUTES
Transid ==> IIHE

Chapter 2. Introduction to Enterprise JavaBeans™ 45

The following screen shows an example of a generic definition that matches any
enterprise bean or stateless CORBA object request. This example changes the
default request processor transaction from CIRP to EJB1.

Note: The transaction definition for EJB1 should be copied from that of CIRP. Any
attributes of the transaction definition can be changed except the program
name, which must be that of a JVM program whose JVMClass is
com.ibm.cics.iiop.RequestProcessor.

Requestmodel : GENERIC
Group : TEST
Description ==> Generic default definition
CorbaServer ==> *
TYpe ==> Both Ejb | Corba | Both
EJB PARAMETERS
Beanname ==> *

==>
==>
==>

INTFacetype ==> Both Home | Remote | Both
CORBA PARAMETERS
OMGModule :
Module ==> *

==>
==>
==>

OMGInterface :
INTErface ==> *

==>
==>
==>

OMGOperation :
COMMON PARAMETERS
OPeration ==> *

==>
==>
==>

TRANSACTION ATTRIBUTES
Transid ==> EJB1

TCPIPSERVICE: A new option, PROTOCOL, is added:

PROTOCOL({HTTP|IIOP})
specifies the protocol to be used by this TCPIP service.

HTTP
Hypertext transfer protocol.

IIOP
Internet inter-ORB protocol.

The description of the PORTNUMBER option is changed as follows:

PORTNUMBER(value)
specifies the decimal number of the port on which CICS is to listen for incoming
client requests.

Notes:

1. The well-known ports are those from 0 through 1023. Do not use the
well-known port range for IIOP TCPIPSERVICES unless you use the well
known ports allocated to IIOP—that is, 683 (non-SSL) or 684 (SSL).

2. Take care to resolve any conflicts with other IIOP servers on the same MVS
image that also use the well-known ports.

46 CICS Transaction Server: Release Guide

3. Port sharing must be enabled for any port that you want to share across the
CICS systems within an MVS image.

TRANSACTION: A new option, OTSTIMEOUT, has been added:

OTSTIMEOUT({NO|0–240000})
specifies, in hours, minutes, and seconds, the default period an Object
Transaction Service (OTS) transaction, created in an Enterprise JavaBeans
environment and executing as a task under this CICS transaction, is allowed to
execute without the initiator of the OTS transaction taking a syncpoint (or rolling
back the OTS transaction). If the specified period elapses, CICS purges the
task.

The initiator of the OTS transaction may be:
v The client of the enterprise bean.
v The EJB container. (The container issues a syncpoint at the end of the bean

method.)
v A session bean that manages its own OTS transactions.

Figure 9 shows an OTS transaction. If the period specified by OTSTIMEOUT
expires before the initiator of the OTS transaction commits or rolls back the
transaction, CICS purges the task.

Methods of session beans that manage their own OTS transactions can
override the default timeout value by using the set_timeout method of the
javax.Transaction.UserTransaction class.

NO
OTS transactions will not time out. This is the default.

0–240000
The period of time (in HHMMSS format) before the task is purged. The
maximum period is 24 hours (240000).

Other changes to resource definition

File definitions: The following files must be defined to CICS:

DFHEJDIR, the EJB directory
is a file containing a request streams directory which must be shared by all
the listener regions and AORs in the CICS logical EJB/CORBA server. You
must define it as recoverable.

begin commit
or rollback

two-phase
commit
protocols,
clean up,
flush buffers,
etc.

“completed”

OTSTIMEOUT
value

0
hhmmss

Figure 9. An OTS transaction. If the period specified by OTSTIMEOUT expires before the initiator of the OTS
transaction commits or rolls back the OTS transaction, CICS purges the task.

Chapter 2. Introduction to Enterprise JavaBeans™ 47

DFHEJOS, the EJB object store
is a file of stateful session beans that have been passivated. It must be
shared by all the AORs in the CICS logical EJB/CORBA server. You must
define it as non-recoverable.

To share DFHEJDIR and DFHEJOS across multiple regions, you could, for
instance, use any of the following methods:
v Define them as remote files in a file-owning region (FOR)
v Define them as coupling facility data tables
v Use VSAM RLS.

There are sample FILE definitions for DFHEJDIR and DFHEJOS in the
CICS-supplied RDO group, DFHEJVS. There are sample coupling facility FILE
definitions for DFHEJDIR and DFHEJOS in the CICS-supplied RDO group,
DFHEJCF. There are sample VSAM RLS FILE definitions for DFHEJDIR and
DFHEJOS in the CICS-supplied RDO group, DFHEJVR. (DFHEJVS, DFHEJCF, and
DFHEJVR are not included in the default CICS startup group list, DFHLIST.)

Changes to DFHFCT resource definition macros: There are changes to the
following DFHFCT resource definition macros:

DFHFCT TYPE=INITIAL
The MIGRATE operand is removed.

DFHFCT TYPE=GROUP
This macro is removed.

DFHFCT TYPE=REMOTE
This macro is removed.

The resource management global user exit: The resource management global
user exit, XRSINDI, is invoked at new points:

v When CORBASERVER resource definitions are installed or discarded.

v When DJAR resource definitions are installed or discarded.

v When the beans in a DJAR are installed or discarded (even though beans are
not directly installable through RDO). The exit is called once for each bean in the
JAR. This happens after a DJAR definition has been installed and before it is
discarded.

Changes to the application programming interface
CICS programs that execute as part of an enterprise bean method (by means of a
JCICS LINK command, for example) are restricted to using the DPL subset of the
EXEC CICS API. In particular, they must not issue EXEC CICS SYNCPOINT
commands.

New Java API commands
CICS supports the Enterprise JavaBeans API Version 1.1, including the
javax.transaction.UserTransaction interface of the Java Transaction API (JTA),
Version 1.0. These APIs are for use by developers of enterprise beans. The
javax.transaction.UserTransaction interface can be used only by session beans that
manage their own OTS transactions.

Changes to the system programming interface

New SPI commands
The following new system programming commands are introduced:

48 CICS Transaction Server: Release Guide

EXEC CICS CREATE CORBASERVER
Builds a CORBASERVER definition in the local CICS region, without reference
to data in the CICS system definition (CSD) file. If the named CORBASERVER
already exists, it is replaced by the new definition. Any DJARs and beans
installed in the old CORBASERVER are discarded.

EXEC CICS CREATE DJAR
Builds a DJAR definition in the local CICS region, without reference to data in
the CICS system definition (CSD) file. If the named DJAR already exists, it is
replaced by the new definition. Any beans from the old DJAR are discarded;
any beans in the new DJAR are installed.

EXEC CICS DISCARD CORBASERVER
Removes a CORBASERVER definition from the local CICS region, together
with any associated DJAR definitions and beans.

EXEC CICS DISCARD DJAR
Removes a DJAR definition from the local CICS region, together with any
associated beans.

EXEC CICS INQUIRE BEAN
Determines whether a specified bean is installed in a specified
CORBASERVER and, if so, which DJAR was installed to install the bean.

The browse form of the command is also supported.

EXEC CICS INQUIRE CORBASERVER
Retrieves the attributes of a specified CORBASERVER definition. A
CORBASERVER is an execution environment for enterprise Java beans or for
stateless CORBA objects.

The browse form of the command is also supported.

EXEC CICS INQUIRE DJAR
Retrieves the attributes of a deployed JAR file (DJAR).

The browse form of the command is also supported.

EXEC CICS PERFORM CORBASERVER
Performs a specified action (PUBLISH or RETRACT) on the beans in a
CORBASERVER.

EXEC CICS PERFORM DJAR
Performs a specified action (PUBLISH or RETRACT) on a deployed JAR file.

EXEC CICS SET CORBASERVER
Sets the timeout value for the session beans in a specified CORBASERVER.

Restriction: There is a restriction on the use of some of the new SPI commands.
The SPI commands affected are:
v CREATE CORBASERVER
v DISCARD CORBASERVER
v PERFORM CORBASERVER (PUBLISH and RETRACT)
v CREATE DJAR
v DISCARD DJAR
v PERFORM DJAR (PUBLISH and RETRACT)

Because only one program-link-level of a CICS transaction instance can contain a
JVM program, SPI commands that invoke JVM programs cannot be invoked from a
transaction instance which already has a JVM program on the program-link stack.
For example, it is not valid for an enterprise bean to link to a COBOL program
which then invokes one of the above SPI commands.

Chapter 2. Introduction to Enterprise JavaBeans™ 49

If this restriction is infringed, CICS makes an exception trace entry, issues message
DFHII0002E, and takes a system dump. The trace entry and message indicate that
the link to the request processor JVM program DFJIIRP failed. Thereafter the failing
SPI command behaves unpredictably.

Modified SPI commands
The following existing system programming commands have been modified:

EXEC CICS COLLECT STATISTICS
You can specify the following new resource type on this command:
v CORBASERVER

EXEC CICS CREATE REQUESTMODEL
The following new options have been added:
v BEANNAME
v CORBASERVER
v INTERFACE
v INTFACETYPE
v MODULE
v OPERATION
v TYPE

The OMGINTERFACE , OMGMODULE, and OMGOPERATION options are
obsolete.

For the meanings of these options, see the description of the
REQUESTMODEL resource definition on page 40.

EXEC CICS CREATE TRANSACTION
The following new option has been added:

v OTSTIMEOUT

For the meanings of this option, see the description of the TRANSACTION
resource definition on page 47.

EXEC CICS INQUIRE REQUESTMODEL
The following new options have been added:
v BEANNAME
v CORBASERVER
v INTERFACE
v INTFACETYPE
v MODULE
v OPERATION
v TYPE

The OMGINTERFACE , OMGMODULE, and OMGOPERATION options are
obsolete.

EXEC CICS INQUIRE TRACETYPE
You can use the following new CICS component identifiers with this command:

Table 3. CICS component names and IDs

Component ID Component name

EJ Enterprise Java domain

II IIOP domain

OT Object Transaction Service domain

RZ Request streams domain

50 CICS Transaction Server: Release Guide

Table 3. CICS component names and IDs (continued)

Component ID Component name

SJ CICS JVM domain

EXEC CICS INQUIRE TRANSACTION
The following new option has been added:

OTSTIMEOUT(data-area)
returns a fullword binary field containing the default period in seconds that
an Object Transaction Service (OTS) transaction created in an Enterprise
JavaBeans environment and executing under this CICS transaction is
allowed to execute without the initiator of the OTS transaction taking a
syncpoint (or rolling back the OTS transaction).

A value of zero indicates that OTS transactions will not time out.

EXEC CICS INQUIRE UOW
The following new option has been added. It returns information about the OTS
transaction associated with the unit of work.

OTSTID(data-area)
returns the first 128 bytes of the transaction identifier (TID) of the OTS
transaction of which the UOW is part.

If the TID is less than 128 bytes, it is padded on the right with binary zeros.

EXEC CICS INQUIRE UOWLINK
The following new option has been added. It returns information about the
partner in the OTS transaction associated with a distributed unit of work.

HOST(data-area)
returns, for a TYPE of IIOP, the TCP/IP hostname, or a string containing the
dotted decimal TCP/IP address, used to refer to the participant in the OTS
transaction. This is useful for identifying the participant, especially when
problems occur.

This is a 255–character data area. Strings of fewer than 255 characters are
padded with blanks.

Note that the UOW and the participant may belong to the same
CORBASERVER.

For TYPE values other than IIOP, HOST returns blanks.

EXEC CICS PERFORM STATISTICS RECORD
You can specify the following new resource type on the command:
v CORBASERVER

EXEC CICS SET TRACETYPE
You can use the following new CICS component identifiers with this command:

Table 4. CICS component names and IDs

Component ID Component name

EJ Enterprise Java domain

II IIOP domain

OT Object Transaction Service domain

RZ Request streams domain

SJ CICS JVM domain

Chapter 2. Introduction to Enterprise JavaBeans™ 51

Changes to CICS supplied transactions

New commands
The following new versions of the CEMT transaction are introduced:

CEMT DISCARD CORBASERVER
Removes a CORBASERVER definition from the local CICS region, together
with any associated DJAR definitions and beans.

CEMT DISCARD DJAR
Removes a DJAR definition from the local CICS region, together with any
associated beans.

CEMT INQUIRE BEAN
Determines whether a specified bean is installed in a specified
CORBASERVER and, if so, which DJAR was installed to install the bean.

CEMT INQUIRE CORBASERVER
Retrieves the attributes of a specified CORBASERVER definition. A
CORBASERVER is an execution environment for enterprise Java beans or for
stateless CORBA objects.

CEMT INQUIRE DJAR
Retrieves the attributes of a deployed JAR file (DJAR).

CEMT PERFORM CORBASERVER
Performs a specified action (PUBLISH or RETRACT) on the beans in a
CORBASERVER.

CEMT PERFORM DJAR
Performs a specified action (PUBLISH or RETRACT) on a deployed JAR file.

CEMT SET CORBASERVER
Sets the timeout value for the session beans in a specified CORBASERVER.

Modified commands
The following existing CEMT commands have been modified:

CEMT INQUIRE REQUESTMODEL
The following new options have been added:
v BEANNAME
v CORBASERVER
v INTERFACE
v INTFACETYPE
v MODULE
v OPERATION
v TYPE

The OMGINTERFACE , OMGMODULE, and OMGOPERATION options are
obsolete.

CEMT INQUIRE TRANSACTION
The following new option has been added:

OTSTIMEOUT(value)
displays the default period in seconds that an Object Transaction Service
(OTS) transaction created in an Enterprise JavaBeans environment and
executing under this CICS transaction is allowed to execute without the
initiator of the OTS transaction taking a syncpoint (or rolling back the OTS
transaction).

A value of zero indicates that OTS transactions will not time out.

52 CICS Transaction Server: Release Guide

CEMT INQUIRE UOW
The following new option has been added. It returns information about the OTS
transaction associated with the unit of work.

OTSTID(value)
displays the first 128 bytes of the transaction identifier (TID) of the OTS
transaction of which the UOW is part.

CEMT INQUIRE UOWLINK
The following new option has been added. It returns information about the OTS
transaction associated with the partner in the distributed unit of work.

HOST(value)
displays, for a TYPE of IIOP, the TCP/IP hostname, or a string containing
the dotted decimal TCP/IP address, used to refer to the participant in the
OTS transaction. This is useful for identifying the participant, especially
when problems occur.

Note that the UOW and the participant may belong to the same
CORBASERVER.

For TYPE values other than IIOP, HOST displays blanks.

CEMT PERFORM STATISTICS
You can specify the following new resource type on this command:
v CORBASERVER

CETR
You can use the following new CICS component identifiers with this command:

Table 5. CICS component names and IDs

Component ID Component name

EJ Enterprise Java domain

II IIOP domain

OT Object Transaction Service domain

RZ Request streams domain

SJ CICS JVM domain

Changes to global user exits
The resource management global user exit, XRSINDI , is invoked at new points:

v When CORBASERVER resource definitions are installed or discarded.

v When DJAR resource definitions are installed or discarded.

v When the beans in a DJAR are installed or discarded (even though beans are
not directly installable through RDO). The exit is called once for each bean in the
JAR. This happens after a DJAR definition has been installed and before it is
discarded.

Changes to the exit programming interface (XPI)
A new parameter is added to the INQUIRE_TRANDEF function of the DFHXMXDX
macro:

OTSTIMEOUT(name4)
returns the default period in seconds that an Object Transaction Service (OTS)
transaction created in an Enterprise JavaBeans environment and executing
under this CICS transaction is allowed to execute without the initiator of the
OTS transaction taking a syncpoint (or rolling back the OTS transaction).

Chapter 2. Introduction to Enterprise JavaBeans™ 53

name4
The name of a 4-byte location to receive the timeout setting, expressed as
a binary value.

Rn
A register to receive the timeout setting, expressed as a binary value.

A value of zero means that the transaction resource definition specifies
OTSTIMEOUT(NO).

Changes to user-replaceable programs

The distinguished name program, DFHEJDNX
There is a new user-replaceable program, the distinguished name program,
DFHEJDNX. DFHEJDNX is used to obtain a string representation of the
distinguished name of an EJB client, when the client has not presented an X.509
certificate containing a name. A sample program is provided.

The security program for IIOP
The communications area passed to the security program for IIOP has been
extended. You can now use your security program to assign user IDs to incoming
requests for EJB objects, as well as to requests for CORBA objects.

On a successful return from the security program, a syncpoint is now taken, if the
return code indicates permission to continue.

The dynamic and distributed routing programs
The communications area passed to the dynamic and distributed routing programs,
DFHDYP and DFHDSRP, has been changed. Some of the fields may now contain
new, IIOP-related, values.

You can now use a customized version of the distributed routing program,
DFHDSRP, to dynamically route EJB work (OTS transactions) and requests for
CORBA stateless objects across the AORs in a logical EJB/CORBA server.

Changes to monitoring
New fields are introduced into performance-class monitoring records in groups
DFHSOCK and DFHTASK. The new fields are described in the CICS Performance
Guide.

Changes to statistics

CORBASERVER statistics
These statistics are available online, and are mapped by the DFHEJRDS DSECT.
They are described in the CICS Performance Guide.

Changes to problem determination

Messages
There are some new CICS messages in the following ranges:

v DFHEJ0001—DFHEJ1299

v DFHII0001—DFHII1020

v DFHOTxxxx—DFHOTxxxx

v DFHRZxxxx—DFHRZxxxx

54 CICS Transaction Server: Release Guide

Messages in the following ranges are removed:

v DFHAP1400—DFHAP1409

v DFHCA5171—DFHCA5173

v DFHCA5267—DFHCA5269

v DFHCZ0359

v DFHFC105

v DFHFC206—DFHFC207

All messages are described in the CICS Messages and Codes manual.

Abend codes
There are some new abend codes:
v AII1—AII5

Trace points
There are new CICS trace entries in the following ranges:

v AP 1800—AP 180F

v EJ 0600—EJ 060F

v II 0000—II 100F

v OT 1000—OT 100F

These trace points are generated in a Java environment and then mapped to the
listed CICS trace points. This approach means that any number of Java generated
trace points can use each of the CICS trace points. For each of the four domains
(AP, EJ, II, and OT), the interface defines 15 different trace types. It is also possible
to determine whether the trace point is an entry or an exit, which gives a total of 16
different trace point IDs (RASITraceEvent types). Setting CICS trace at a particular
level can generate several of these RASITraceEvent types. As is generally the case
in CICS, these trace levels are exclusive, for example trace level 2 does not include
trace level 1. These trace types and the corresponding CICS trace levels are
explained in table Table 6.

Table 6. Types of Java generated trace points (RASITraceEvent types) and the associated
CICS trace levels

RASITraceEvent type CICS trace
level

Meaning

TYPE_API 1 Defines an application programming interface
(API) trace point.

TYPE_CALLBACK 2 Defines a callback method trace point

TYPE_ENTRY_EXIT 1 Defines method entry and exit trace points

TYPE_ERROR_EXC off Defines an error or exception condition trace point

TYPE_MISC_DATA 2 Defines a miscellaneous data trace point

TYPE_OBJ_CREATE 2 Defines an object creation (constructor) trace point

TYPE_OBJ_DELETE 2 Defines an object deletion trace point

TYPE_PRIVATE 2 Defines a private method trace point

TYPE_PUBLIC 2 Defines a public method trace point. (This typically
includes package and protected scope, as all of
these methods may be used by other classes.)

TYPE_STATIC 2 Defines a static method trace point

Chapter 2. Introduction to Enterprise JavaBeans™ 55

Table 6. Types of Java generated trace points (RASITraceEvent types) and the associated
CICS trace levels (continued)

RASITraceEvent type CICS trace
level

Meaning

TYPE_SVC 2 Defines a service code trace point. Service code is
generally ″low-level″ code which provides
commonly used services to other classes

TYPE_LEVEL1 1 Defines a ″low-detail″ trace point

TYPE_LEVEL2 2 Defines a ″medium-detail″ trace point

TYPE_LEVEL3 3 Defines a ″high-detail″ trace point

TYPE_PERF 2 Defines a performance-monitoring trace point

Trace points in the following ranges are removed:

v DFHAP21E1—DFHAP21E4

v DFHAP0400—DFHAP0404

v DFHAP0680—DFHAP0697

Trace points are listed in the CICS Trace Entries manual.

Dump
A new II section, relating to the IIOP domain, is added to CICS system dumps.

Resources on which tasks can wait
Table 7 shows the new resources on which tasks in a CICS system can wait. The
resource names and resource types that are shown are the ones that you can see
in formatted trace entries or by online inquiry.

Table 7. Resources on which a suspended task might be waiting

Resource
type

Resource
name

Suspending
module

DSSR call WLM wait
type

Task

IIRR SOCBNOTI DFHIIRR SUSPEND IO User

IIRP NOTI DFHIIRP SUSPEND IO User

A request receiver DFHIIRR task suspends with resource type IIRR and resource
name SOCBNOTI when it has no work to do and the TCPIP connection is still
open. These are resumed by a NOTIFY gate when IIRR is told there is another
request from the sockets domain or a reply has come in from the request streams
domain.

A request processor DFHIIRP task suspends with resource type IIRP and resource
name NOTI when it is waiting for requests or replies. These are resumed by a
NOTIFY gate when IIRP is told there is another request or reply from the request
streams domain.

Changes to sample programs

Sample user-replaceable programs
There is a new sample program for the distinguished name user-replaceable
program, DFHEJDNX.

The sample security program for IIOP, DFHXOPUS, has been updated to use the
new communications area passed to it.

56 CICS Transaction Server: Release Guide

Sample programs for RDO
The sample programs for use with the CICS system definition utility, DFHCSDUP,
have been updated. The samples, which can be invoked by DFHCSDUP during
EXTRACT processing, have been changed to reflect the new and changed RDO
objects.

Chapter 2. Introduction to Enterprise JavaBeans™ 57

58 CICS Transaction Server: Release Guide

Chapter 3. Enhancements to CORBA support

This chapter describes enhancements to the CORBA support first introduced into
CICS in CICS TS 1.3.

The chapter covers the following topics:
v “Overview”
v “Benefits” on page 62
v “Requirements” on page 63
v “Changes to CICS externals” on page 63

Overview
CICS support for the Internet Inter-ORB protocol (IIOP) allows inbound requests
from CORBA clients to CICS Java applications. This function, and the object
request broker (ORB) implementation, is enhanced to support the following levels of
the Common Object Request Broker Architecture (CORBA):

v CORBA 2.1

v IIOP 1.1

You can find information about IBM WebSphere at:
http://www.ibm.com/websphere/

You can find information about the CORBA specification at the OMG Web address:
http://www.omg.org/library

The enhanced function provides the necessary support for enterprise beans, using
the remote method invocation (RMI) interface of IIOP. See “Chapter 2. Introduction
to Enterprise JavaBeans™” on page 9 for more information about the Enterprise
JavaBeans specification and its implementation in CICS.

These CORBA enhancements add new function and make changes that also affect
existing IIOP applications, sometimes called stateless CORBA objects. The
following new function has been added:

v Support for outbound IIOP. CORBA applications can now act as both client and
server.

v Support for the CORBA 2.1 API, excluding dynamic invocation interface (DII),
dynamic skeleton interface (DSI), and GIOP 1.1 fragments.

v Method invocations can participate in object transaction service (OTS) distributed
transactions. If a client calls an IIOP application in the scope of an OTS
transaction, information about the transaction flows on the IIOP call. If a target
stateless CORBA object implements CosTransactions::TransactionalObject, then
the object is treated as transactional.

Note: An OTS transaction is analogous to a distributed unit of work, not a CICS
transaction or resource definition.

v REQUESTMODEL attributes MODULE, INTERFACE, and OPERATION (which
replace attributes OMGMODULE, OMGINTERFACE, and OMGOPERATION
supported in CICS TS 1.3) can have names up to 255 characters long.

Note: The changes to the REQUESTMODEL resource definition are such that it
is incompatible with CICS TS 1.3. Although you can update a 1.3
definition from a CICS TS 2.1 region, you cannot share a

© Copyright IBM Corp. 2001 59

REQUESTMODEL resource definition for use on both releases. See the
CICS Transaction Server for z/OS Migration Guide for migration
information about REQUESTMODEL resource definitions.

Changes affecting existing IIOP applications
The following changes affect existing IIOP applications:

v CICS programs that execute as part of an IIOP application (by means of a JCICS
LINK command, for example) are restricted to using the DPL subset of the EXEC
CICS API. In particular, they must not issue EXEC CICS SYNCPOINT
commands. This affects IIOP applications that are not subject to workload
balancing (which was implemented in terms of DPL) in CICS TS OS/390 Version
1 Release 3. The DPL subset is defined in Appendix G in the CICS Application
Programming Reference.

v IIOP applications are supported in JVM mode only. The VisualAge for Java,
Enterprise Edition for OS/390 bytecode binder cannot be used.

v A CORBASERVER resource definition is needed to define the execution
environment of the IIOP application.

v The REQUESTMODEL resource definition is changed. The OMGMODULE,
OMGINTERFACE, and OMGOPERATION attributes are renamed to MODULE,
INTERFACE, and OPERATION. New fields are added to identify the related
CORBASERVER and to support Enterprise JavaBeans.

Generic pattern matching has been changed to allow only zero or more
characters followed by an asterisk (*). In cases where several different generic
patterns match a given string, there is now a simple rule for choosing the most
specific match. The longest generic pattern results in the most specific match.

v The new PROTOCOL parameter of the TCPIPSERVICE resource definition for
the IIOP port must be set to IIOP.

v The offline GenFacIOR utility is no longer needed to build an Interoperable
Object Reference (IOR) to be used by the client to access the object. An IOR
(genfac.ior file) is created by CICS when the CORBASERVER resource definition
is installed. This can be published to JNDI using the PERFORM
CORBASERVER PUBLISH command, or can be downloaded to the client
system. All existing stringified IOR files need to be recreated.

v Any user-replaceable module (URM) implementations for IIOP security must be
changed to support the updated COMMAREA structure. The URM is now called
only if it is specified in the TCPIPSERVICE definition for the IIOP port. It is no
longer possible to update the transaction identifier from the URM.

Note: Listener regions and AORs that form part of a CICS IIOP server must both
be at the CICS TS 2.1 level.

Supported client and server platforms
At execution time the client (for inbound) or target server (for outbound) must satisfy
the following requirements :

v Provide an ORB compliant with the CORBA 2.1 specification, and support IIOP
1.1.

v Be able to resolve homes from the naming server or store homes in the naming
server, such as a Windows NT CosNaming Server.

v Provide a compatible transaction service if a transaction is to be shared between
a client and CICS, or CICS and an outbound target server.

v Support SSL if secure communications are required.

60 CICS Transaction Server: Release Guide

IIOP request processing
The following diagram shows the IIOP request flow in CICS TS OS/390 Version 1
Release 3:

The enhanced IIOP request processing is similar in concept, with the following main
differences:

v The CIRR request receiver does not attach a transaction directly. It creates or
joins a request stream to allow appropriate OTS transaction and security context
to be associated with the request processor task. The request stream logic uses
a directory to relate IIOP requests and OTS transactions, so that requests that
are part of the same transaction are routed to the same request processor. You
need to provide a resource definition for DFHEJDIR for this file, and provide an
appropriate VSAM dataset.

v The CIRR request receiver terminates when it has no further work to do, instead
of waiting for further work. It is attached by the socket domain when the
connection is first created and when there are further client requests to process
for the connection.

The following diagram shows the new IIOP request flow:

SO
domain
listener

Request
Receiver

DFHIIOP

User
method

CIOR

Request
Processor
(java main/

ORB)

DFJIIOP

CIOD

connect
request attach

link

linkattach dispatch

GIOP
reply

GIOP
request

receive

Request
Processor

stub

DFHIIOPA

CIOD

send

security
URM

DFHXOPUS

Region boundary
(optional)

Figure 10. The CICS TS Release 1.3 IIOP execution flow

Chapter 3. Enhancements to CORBA support 61

Workload balancing
Workload balancing of requests is implemented at three levels:

TCP/IP port sharing
TCP/IP port sharing is provided by Communications Server for OS/390.

Domain name server (DNS) connection optimization for TCP/IP
This facility balances IP connections and workload in a sysplex domain. The
initial interoperable object reference (IOR) to the CICSplex contains a generic
host name and port number. With DNS connection optimization, multiple CICS
regions are started to listen for IIOP requests on the same port (using virtual IP
addresses), and the host name in the initial IOR is resolved to an IP address by
MVS DNS and workload management (WLM) services.

Connection optimization in a sysplex domain is described in the OS/390 V2R8.0
SecureWay CS IP Configuration, SC31-8513-03.

CICS dynamic routing
This facility routes the flow from request receiver to request processor across
CICS regions. Dynamic selection of the target is provided by CICS or
CICSPlex SM dynamic routing services, which select the least loaded or most
efficient application region.

Benefits
Some of the benefits arising from the enhancements to the CORBA support in CICS
are:

v Support for the Enterprise JavaBeans specification, providing component
portability and improved application development productivity allied with the
established strengths of CICS in security, reliability and scalability

v Support for outbound CORBA requests from both Enterprise JavaBeans and
stateless CORBA objects

v Support for the CORBA object transaction service for both Enterprise JavaBeans
and stateless CORBA objects

Request
Receiver

receive

send

Region boundary
(optional)

connect
request

GIOP
reply

GIOP
request

link

security
URM

DFHXOPUS

Sockets
listener

CIRR

Transaction
service

User
method

Container

Request
Processor
(java main/

ORB) invoke

CIRP

Figure 11. The CICS TS Version 2 IIOP execution flow

62 CICS Transaction Server: Release Guide

Requirements
The main software requirement for the execution of enterprise beans is IBM
Developer Kit for OS/390, Java 2 Technology Edition, Version 1.3.

Changes to CICS externals
There are changes to a number of CICS external interfaces that support the
CORBA server and related Enterprise JavaBeans implementations. Most of these
are described in the Enterprise JavaBeans chapter in “Changes to CICS externals”
on page 32. The changes to the TCPIPSERVICE resource definition are described
here:

The following new parameters are added to TCPIPSERVICE:

AUTHENTICATE(NO|BASIC|CERTIFICATE|AUTOREGISTER|AUTOMATIC)
specifies the level of authentication required on connections associated with this
TCPIPSERVICE definition.

NO No authentication of the client is required. However, if a registered
certificate is provided by the client, it is used. This is the default.

BASIC
HTTP Basic Authentication of the client is attempted. If the client has
sent an HTTP Authorization header, its contents are decoded as a user
id and password. If these are valid, the user id is passed to the
user-replaceable module for this TCPIPSERVICE definition. Otherwise,
an HTTP 401 response is returned, together with a WWW-authenticate
header, which causes the browser program to prompt the user for a
new user id and password. These are returned in the required
Authorization header. This process continues until the client either
supplies a valid user id and password, or cancels the connection.

CERTIFICATE
A valid X.509 client certificate is required from the client, and it must
map to a valid trusted user id in the external security manager’s
database. If such a certificate is not received, the connection is rejected
with an HTTP 403 response. Otherwise, the derived user id is passed
to the user-replaceable module for this TCPIPSERVICE definition.

This attribute cannot be specified unless SSL(CLIENTAUTH) is also
specified.

AUTOREGISTER
This allows the client to register a certificate automatically. If the client
presents a certificate that is not registered, an HTTP Basic
Authentication dialogue is entered, in which the client must enter the
user id for the certificate to be registered, together with its
corresponding password. If this dialogue is completed successfully, the
certificate is registered to the specified user id.

This attribute cannot be specified unless SSL(CLIENTAUTH) is also
specified.

AUTOMATIC
This combines the AUTOREGISTER and BASIC functions. It attempts
to authenticate the client as best it can. If a registered certificate is
available, it is used. Otherwise, Basic Authentication is used to prompt

Chapter 3. Enhancements to CORBA support 63

the client for a user id and password. If an unregistered certificate is
used, and Basic Authentication is successful, the certificate is
registered.

DNSGROUP
specifies the location parameter passed on the IWMSRSRG register call to
Workload Manager. The value may be up to 18 characters, and any trailing
blanks are ignored. This parameter is referred to as group_name by the TCP/IP
DNS documentation and is the name of a cluster of equivalent server
applications in a sysplex. It is also the name within the sysplex domain that
clients use to access the CICS TCPIPSERVICE.

More than one TCPIPSERVICE may specify the same group name. The
register call is made to WLM when the first service with a specified group name
is opened. Subsequent services with the same group name do not cause more
register calls to be made. The deregister action is dictated by the
GRPCRITICAL attribute. It is also possible to explicitly deregister CICS from a
group by issuing a master terminal or SPI command.

GRPCRITICAL(NO|YES)
marks the service as a critical member of the DNS group, meaning that this
service closing or failing causes a deregister call to be made to WLM for this
group name. The default is NO, allowing two or more services in the same
group to fail independently and CICS still remains registered to the group. Only
when the last service in a group is closed is the deregister call made to WLM, if
it has not already been done so explicitly. Multiple services with the same group
name can have different GRPCRITICAL settings. The services specifying
GRPCRITICAL(NO) can be closed or fail without causing a deregister. If a
service with GRPCRITICAL(YES) is closed or fails, the group is deregistered
from WLM.

PROTOCOL
identifies to CICS the type of service to be provided on the TCP/IP port. Values
are:
HTTP connections are handled by CICS Web support.
IIOP connections are handled by CICS IIOP support. IIOP is required for

TCPIPSERVICEs that are to accept inbound requests for enterprise
beans.

Changes to the IIOP sample resource definitions
There are changes to the IIOP sample resource definitions group, DFH$IIOP. See
the CICS Transaction Server for z/OS Migration Guide for details.

64 CICS Transaction Server: Release Guide

Chapter 4. The CICS Connector for CICS TS

This chapter describes the CICS Connector for CICS TS. It covers the following
topics:
v “Overview”
v “Using the CICS Connector for CICS TS’s CCF interface” on page 69
v “Using the CTG API” on page 76
v “Benefits” on page 79
v “Requirements” on page 79
v “Restrictions and recommendations for the CICS Connector for CICS TS” on

page 79
v “Installation” on page 80
v “Changes to CICS externals” on page 81

Overview
The CICS Connector for CICS TS helps you to build Enterprise JavaBean (EJB)
server components that make use of existing CICS programs.

Previous releases of CICS support CICS connectors that enable a Java client
program, running outside CICS (on Windows NT, OS/2®, UNIX™, or native OS/390),
to connect to a specified program on a CICS server. CICS Transaction Server for
z/OS introduces a new CICS connector—the CICS Connector for CICS TS—that
enables a Java program running on CICS Transaction Server for z/OS to connect to
a specified program on a CICS server.

What are CICS connectors?
A CICS connector is a software component that allows a Java client application to
invoke a CICS application. Typically, the Java client programs that use a CICS
connector are applets or servlets.

A CICS connector is supported on each of the following platforms: AIX®, OS/2,
Windows NT, Solaris, and OS/390. The Java client application may run on the same
platform as the connector, or it may run on any Java-enabled platform and drive the
connector by means of a gateway process running on one of the listed platforms.

The CICS connectors that run on AIX, OS/2, Windows NT, and Solaris are shipped
as part of the CICS Transaction Gateway (CTG) product and connect to CICS on
OS/390 using an SNA or TCP62 connection. The CICS connector that runs on
native OS/390 is shipped as part of the CICS Transaction Gateway for OS/390
product and connects to CICS on OS/390 using an external CICS interface (EXCI)
connection.

In every case, the Java client application using the connector is coded using one of
two application programming interfaces (APIs):

1. A lower-level, CICS-specific, API known as the CTG API. The CTG API consists
of the external call interface (ECI) and the external presentation interface (EPI).

2. A higher-level API known as the Common Connector Framework (CCF) Client
Interface.

The Common Connector Framework is an IBM architecture that defines a
standard way for a Java program to interact with an application server such as
CICS, IMS™, or SAP. One of the advantages of this architecture is that it
provides a client API with the same style, regardless of the application server

© Copyright IBM Corp. 2001 65

that it drives. This enables application development tools, such as VisualAge for
Java (VAJ) Enterprise Access Builder, to provide generic tooling independent of
the type of application server being accessed.

All the CICS connectors support the CCF Client Interface.

The CICS Connector for CICS TS runs on CICS TS z/OS. Like the other CICS
connectors, it provides both the CTG API and the CCF Client Interface.

The recommended way to create a Java application or bean that uses a CICS
connector is to use the VAJ Enterprise Access Builder, or a product that offers
similar function, to program to the connector’s CCF Client Interface. If you do not
have such a product, you must use the CTG API.

The Java applications, or beans, that you create are portable across the set of
CICS connectors. Thus, for example, a bean that invokes a CICS program on a
CICS OS/390 server could be used from:

v An applet in a browser, connecting by means of a gateway process running on
any of the platforms supported by the CTG

v A servlet in a Web server running on any of the platforms supported by the CICS
connectors

v An enterprise bean in an EJB server running on any of the platforms supported
by the CICS connectors

v A CICS Java application or enterprise bean running in CICS TS z/OS.

The CICS Transaction Gateway for OS/390 is described in the CICS Transaction
Gateway for OS/390 Administration manual, SC34–5528–01. The CICS Transaction
Gateway API is described in the CICS Transaction Gateway Programming Guide,
SC34–5594–00.

The CICS Connector for CICS TS
The CICS Connector for CICS TS allows a Java program or enterprise bean
running on CICS TS z/OS to link to a CICS server program. It allows you, for
example, to create powerful EJB components that make use of existing CICS
programs.

The CICS server program:

v May be written in any of the CICS-supported languages

v Must use a suitable communications area (COMMAREA)

v Must not do any terminal input/output

v Typically, runs on a separate back-end CICS OS/390 region, but optionally may
be on the same CICS region as the Java program or bean.

The background—accessing CICS programs from Java
Frequently, new Java applications can be developed more quickly and reliably by
harnessing the power of existing (non-Java) CICS programs. Typically, the Java
application is network-based, perhaps started from a browser, and the CICS
program is written in a language such as COBOL. This section reviews the several
ways in which existing CICS OS/390 programs can be accessed from Java code,
and shows how the CICS Connector for CICS TS fits into this pattern.

66 CICS Transaction Server: Release Guide

From Java programs outside CICS
From the network, a Java client application or applet can use the CICS connector
interface—that is, either the CCF Client Interface or the CTG API—to link to a CICS
OS/390 program.

This method is shown in Figure 12. In this example, because the client applet is not
running on the same host as the CICS connector, the CICS Transaction Gateway
for OS/390 is used to communicate with the connector. The connector uses EXCI to
pass requests to CICS.

The picture also shows a Java servlet. It too uses the CICS connector interface to
connect to a CICS OS/390 server program. Because the servlet is running on the
same host as the connector, it uses the local protocol to communicate with the
latter. The CICS Transaction Gateway for OS/390 is bypassed.

The CICS connector for native OS/390 supports the external call interface but not
the external presentation interface. Thus, ECI but not EPI calls are supported.

A variation is shown in Figure 13 on page 68. In this scenario, the CICS Transaction
Gateway runs on an intermediate Windows NT, OS/2, or Solaris machine. On these
platforms, the CICS connector uses a CICS Universal Client to pass requests to a
back-end CICS OS/390 region. In this setup, the full CTG API (including both ECI
and EPI functions) is supported. In other words, the Java client can access

CICS
server region

HTTP

CTG
calls

EXCI

(ECI)

Local protocol

CICS Transaction Gateway
for OS/390 EXCI

Web Server

Downloadable Java applet code

Workstation

Java

client

app.

Java-
enabled
Browser

Java

applet

runs here

C
IC

S
co

nn
ec

to
r

i/f

Web Server

CICS
connector

i/f
Servlet

OS/390

Figure 12. Java clients connect to a CICS server program from outside CICS. A Java applet, running on a browser,
uses the CICS connector interface to link to a CICS OS/390 server program. Because the client applet is not running
on the same host as the CICS connector, the CICS Transaction Gateway for OS/390 is used to communicate with the
connector. The connector uses EXCI to pass requests to CICS. (To CICS, these appear to be ECI calls. Because
EXCI is used, the CICS server region must be on the same OS/390 operating system, or Parallel Sysplex, as the
connector.)

The picture also shows a Java servlet. It too uses the CICS connector interface to connect to a CICS OS/390 server
program. Because the servlet is running on the same host as the connector, it uses the local protocol to communicate
with the latter. The CICS Transaction Gateway for OS/390 is bypassed.

Chapter 4. The CICS Connector for CICS TS 67

3270-based CICS programs, as well as CICS programs that use a suitable
communications area.

To use CICS programs as servers in this way, the Java programmer requires some
knowledge of CICS programming.

From Java programs inside CICS
There are two methods by which Java programs running within CICS can access
non-Java CICS programs:

Using JCICS: A CICS Java program or CICS enterprise bean can use the JCICS
classes to link to a CICS server program. The server program can be written in any
of the CICS-supported languages and be either local or remote. It must use a
suitable communications area and must not do any 3270–based terminal
input/output.

The Java programmer requires a detailed knowledge of CICS.

Using the CICS Connector for CICS TS: In CICS Transaction Server for z/OS
only, a Java program or enterprise bean running on CICS can use the CICS
Connector for CICS TS to link to a suitable CICS server program. The connector
uses a CICS LINK call, rather than EXCI, to access the back-end server program.
Link and distributed program link (DPL) calls are supported. This scenario is shown
in Figure 14 on page 69.

The CICS Connector for CICS TS uses the connector classes provided with the
CICS Transaction Gateway for OS/390; however, because the client program or
bean runs on the same host as the connector, it is not necessary, to use the
connector, to run the CICS Transaction Gateway for OS/390 as a server application
in its own address space.

CICS Transaction Gateway
for Windows NT

OS/390Windows NT

HTTP

CTG
calls

Web Server

Downloadable Java applet code

ECI

EPI

Local protocol

Web Server

CICS
connector

i/f
Servlet

CICS
Universal

Client

Workstation

Java

client

app.

Java-
enabled
Browser

Java

applet

runs here

C
IC

S
co

nn
ec

to
r

i/f

CICS
server
region

Figure 13. Java clients connect to a CICS OS/390 server program from outside CICS. In this scenario, the CICS
Transaction Gateway runs on an intermediate Windows NT, OS/2, or Solaris machine. The CICS connector uses a
CICS Universal Client to pass requests to a back-end CICS OS/390 region. Both ECI and EPI calls are supported.

68 CICS Transaction Server: Release Guide

There are two ways of using the CICS Connector for CICS TS:

1. Program to the connector’s CCF Client Interface, using VisualAge for Java
Enterprise Access Builder or a similar product. This is the recommended
method.

2. Program to the connector’s CTG API. Normally, you would use this method only
if you do not have access to VAJ EAB or a similar product.

To use the CICS Connector for CICS TS to create an enterprise bean, the Java
programmer requires a reasonable knowledge of CICS (although somewhat less
than if he were using JCICS). However, the enterprise beans that he creates, using
either the connector or the JCICS classes, can be used by Java programmers who
have little knowledge of CICS.

Using the CICS Connector for CICS TS’s CCF interface
The recommended way to create a Java application that uses any CICS
connector—including the CICS Connector for CICS TS—is to use the VisualAge for
Java Enterprise Access Builder, or a similar product, to program to the connector’s
CCF Client Interface. The VAJ Enterprise Access Builder provides visual tools and
high-level constructs that mask the complexity of coding CCF objects by hand. VAJ
is described in “Introducing VisualAge for Java Enterprise Access Builder” on
page 74. The rest of this section describes what you need to know about the CCF
Client Interface in order to use the Enterprise Access Builder effectively.

The CCF Client Interface consists of the following classes:

ConnectionSpec
A ConnectionSpec object holds all the connection-relevant attributes (for
example, hostname and TCP/IP port number) necessary to drive an
interaction with a server. It identifies a unique connection.

It is the factory for a Communication object.

OS/390

HTTP

IIOP calls
to

enterprise
bean

OS/390

Web Server

Downloadable Java applet code

DPL

CICS Transaction Server for z/OS

EJB container

Enterprise bean

instance
LINK

Back-end
CICS
server
region

CICS TS
connector i/f

Workstation

Java

client

app.

Java-
enabled
Browser

Java

applet

runs here

C
IC

S
co

nn
ec

to
r

i/f

Figure 14. A CICS enterprise bean connects to a CICS server program. This method is only possible in CICS
Transaction Server for z/OS.

A Java client application or applet uses RMI/IIOP to create an instance of an enterprise bean, which exists in a CICS
EJB container. The enterprise bean uses the CICS Connector for CICS TS to link to a server program on a back-end
CICS OS/390 region. The connector issues a DPL call to the back-end region.

Chapter 4. The CICS Connector for CICS TS 69

The CICS Connector for CICS TS’s ConnectionSpec class is called
CICSConnectionSpec.

InteractionSpec
An InteractionSpec object holds all the interaction-relevant attributes (for
example, the name of the target program and the mode of the
interaction—send or receive) necessary for an interaction with a server. It is
passed as an argument to a Communication object when a particular
interaction is to be carried out.

The CICS Connector for CICS TS’s InteractionSpec class is called
ECIInteractionSpec.

Communication
The execute method of a Communication object allows you to drive an
interaction with a server. The execute method takes three arguments—an
InteractionSpec that specifies the type of interaction, and input and
output objects that carry the exchanged data.

input/output
Input and output objects are beans that hold the data exchanged with the
target program. The data is accessible via the bean’s property access
methods.

The implementation of the beans may be based on the Java Record
Library, or may be proprietary to a particular CCF connector.

VAJ Enterprise Access Builder provides tools to import a data descriptor
(such as a COBOL copy book) that represents the communications area of
the target program. From the data descriptor, you can construct record
beans that are used to build and decode the target program data.

Here’s an outline of the program logic needed for a single interaction with an
application server, using the standard CCF Client Interface classes supported by a
CICS connector. This is the logic a CICS enterprise bean would use to access a
back-end CICS program.

1. Create a CICSConnectionSpec object that includes a URL, which (in our case,
because the CICS enterprise bean is running on the same operating system as
the CICS Connector for CICS TS) should be set to local://.

Note: How to set the attributes of the CCF Client Interface objects is described
in more detail in “Setting the CCF interface attributes” on page 71.

2. Create a Communication object from the CICSConnectionSpec object, and
execute its connect method.

3. Create an ECIInteractionSpec object that includes the name of the target
program.

4. Run the execute method of the Communication object, passing the
ECIInteractionSpec, and the input and output record beans, as arguments.

5. Retrieve the data returned by the target program from the output record bean.

6. Execute the disconnect method of the Communication object.

This sequence is illustrated in Figure 15 on page 71.

70 CICS Transaction Server: Release Guide

Setting the CCF interface attributes
This section describes how to set the attributes of the CICSConnectionSpec and
ECIInteractionSpec classes that form part of the CICS Connector for CICS TS’s
Client Interface. (The Communication, input, and output classes are programmed
in the same way as for other CICS CCF connectors.)

Note: Many of the attributes are ignored by the CICS Connector for CICS TS. This
is because the CICSConnectionSpec and ECIInteractionSpec classes are
also used by traditional CTG client applications, for some of which the
attributes are meaningful. Ignoring the attributes, rather than introducing new
types of CICSConnectionSpec and ECIInteractionSpec, means that existing
CTG client applications can be ported more easily to CICS OS/390.

CICSConnectionSpec
Set the attributes of your CICSConnectionSpec object as follows:

Component ConnectionSpec InteractionSpec input output Communication

new

set <properties>

createCommunication new

connect

new

set <properties>

new

set <properties>

new

get<properties>

execute <InteractionSpec, input, output>

disconnect

Figure 15. Using the CCF Client Interface classes

Chapter 4. The CICS Connector for CICS TS 71

CICSServer
The SYSID of the CICS region which owns the program to be linked to. You
can set this value explicitly. However, the recommended method is to set a null
value here, and to rely on the PROGRAM definition to specify the location of
the server program, and whether or not dynamic routing should occur.

ClientSecurityClassName
Ignored by CICS.

connectionTimeout
Ignored by CICS.

GatewayURL
Set as follows:

auto://tcpipaddr:portno/
Supported, provided that the TCP/IP address is that of the host that CICS is
running on (in which case, the local protocol is used).

local://
Supported.

http://tcpipaddr/
Not supported.

tcp://tcpipaddr:portno/
Not supported.

Normally (because the CICS enterprise bean you are creating will run on the
same host as the CICS Connector for CICS TS) you would set strGatewayURL
to local://.

logonLogoff
Ignored by CICS.

maxConnections
Ignored by CICS.

minConnections
Ignored by CICS.

reapTime
Ignored by CICS.

ServerSecurityClassName
Ignored by CICS.

terminalModel
Ignored by CICS.

unusedTimout
Ignored by CICS.

ECIInteractionSpec
Set the attributes of your ECIInteractionSpec object as follows:

CICSELUW
Set as follows:
False The ECI call is not part of the CICS extended unit of work (UOW).
True The ECI call is part of the CICS extended UOW.

Note: In traditional CTG applications, the CICS extended UOW
encompasses a series of one or more ECI requests to a server
program, each executed with SYNCONRETURN set off, followed

72 CICS Transaction Server: Release Guide

by a final ECI request (to the same server program) that is
executed with SYNCONRETURN set on. This final ECI call
causes CICS to take a syncpoint on successful completion of the
server program, and any changes to resources made by the
server program to be committed.

When using the CICS Connector for CICS TS, all the LINK
requests in the CICS extended UOW, including the last, are
executed with SYNCONRETURN set off. Any changes to
resources made by the server program are committed by CICS
at end of task or if the application issues a syncpoint. This
behavior is consistent with that of CICS DPL.

ECITimeout
Ignored by CICS.

Mode
Only sync (MODE_SEND_RECEIVE) is supported.

Password
Ignored by CICS.

ProgramName
Set to the name of the program to be linked to.

TPNTransactionName
Ignored by CICS.

TransactionName
Optionally, can be set to the name of the transaction to be used as the mirror
transaction on the remote region. The default is an empty string (“”).

Userid
Ignored by CICS.

Data conversion
Java programs always use the Unicode character set. However, the
communications area passed to the target program on the back-end CICS OS/390
region must be in EBCDIC. When writing your enterprise beans, you can handle
data conversion using either of two methods:

Method 1

1. Convert from Unicode to ASCII in the input record bean.

2. Use the CICS conversion program, DFHCCNV, to convert between ASCII
and EBCDIC. The connector calls DFHCCNV, before and after the program
link call, provided that you have included a conversion template for the
program’s communication area in the DFHCNV conversion table. Figure 16
shows an example conversion template, coded using DFHCNV macros, for
the communications area of a program named server_program.

DFHCNV TYPE=ENTRY,RTYPE=PC,CLINTCP=437,RNAME=server_program,USREXIT=NO
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES

Figure 16. A conversion template to convert a program COMMAREA between ASCII and
EBCDIC. This example converts all the data. (By coding multiple DFHCNV TYPE=FIELD
macros, you can select which fields are converted, and what type of conversion is applied to
each.)

Chapter 4. The CICS Connector for CICS TS 73

For detailed information about the DFHCCNV conversion program,
conversion templates, the DFHCNV conversion table, and the syntax of
DFHCNV macros, see the CICS Family: Communicating from CICS on
System/390.

Note: The connector calls DFHCCNV on the local CICS region—the region
on which the enterprise bean runs—even if the target program is
remote. So you must add your conversion template to the conversion
table on the local region.

3. Convert from ASCII to Unicode in the output record bean.

Method 2

1. Convert directly from Unicode to EBCDIC in the input record bean.

2. Convert directly from EBCDIC to Unicode in the output record bean.

This method is more efficient because it misses out the intermediate conversion
from Unicode to ASCII. However, the record beans must be coded to contain all
the conversion logic.

Introducing VisualAge for Java Enterprise Access Builder
The VisualAge for Java Enterprise Access Builder provides a construct called a
Command. A Command represents a single interaction with an application server. It
is a Java bean with properties and an execute method—see Figure 17 on page 75.
A Command is a composition—it encapsulates all the objects necessary for carrying
out an interaction.

74 CICS Transaction Server: Release Guide

The Enterprise Access Builder also provides a high-level construct called a
Navigator, which implements a sequence of interactions with an application server.
A Navigator is simply a composition of Commands and Navigators. Figure 18 on
page 76 shows a Navigator produced by the Enterprise Access Builder.

InteractionSpecConnectionSpec

Communication

Input Output
input

inProperty

inProperty

and/or

output

outProperty

outProperty

and/or

Command

successfulEvent

execute unsuccessfulEvent

Figure 17. A Command bean produced by VisualAge for Java EAB

Chapter 4. The CICS Connector for CICS TS 75

The EAB Command Editor tool allows you to build Commands and Navigators
visually.

Using the CTG API
If you do not have VisualAge for Java Enterprise Access Builder or a similar
product, your enterprise beans can use either JCICS or the CICS Transaction
Gateway API to link to a CICS server program.

This section tells you how to program the CICS Connector for CICS TS’s non-CCF
interface, using the CTG API.

Using the CTG API to link from a CICS OS/390 Java program or enterprise bean to
another, possibly remote, CICS program is possible only in CICS TS z/OS. (In
previous releases of CICS, you could only use the CTG API to link to a CICS
OS/390 program from a non-CICS Java client application.)

The CTG API is described in the CICS Transaction Gateway Programming Guide,
SC34–5594–00, and in the HTML documentation shipped with the CICS
Transaction Gateway. You should refer to those sources for general guidance. The
rest of this section describes how to use the ECIRequest and JavaGateway
classes with the CICS Connector for CICS TS.

Note: Many of the attributes of the ECIRequest and JavaGateway classes are
ignored by the CICS Connector for CICS TS. This is because these classes
are also used by traditional CTG client applications, for some of which the
attributes are meaningful. Ignoring the attributes, rather than introducing new
types of ECIRequest and JavaGateway, means that existing CTG client
applications can be ported more easily to CICS OS/390.

output

outProperty

outProperty

and/or

Navigator

successfulEvent

......

input

inProperty

inProperty

and/or

execute
unsuccessfulEvent

Navi. 1

Cmd. 1

Cmd. 2

Cmd. 3

Figure 18. A Navigator produced by VisualAge for Java EAB

76 CICS Transaction Server: Release Guide

ECIRequest
Set the attributes of your ECIRequest object as follows:

Abend_Code
Ignored by CICS.

Call_Type
Set to one of the following:

CICS_EciListSystems
The connector returns a list of CICS server regions.

Note: The list returned by the CICS Connector for CICS TS contains only
one item—see the description of the SystemList attribute.

ECI_STATE_SYNC
The connector returns the status of the connection.

ECI_SYNC
The connector issues an EXEC CICS LINK SYSID() PROGRAM() call.

ECI_SYNC_TPN
The connector issues an EXEC CICS LINK SYSID() PROGRAM() call.

Cics_Rc
CICS returns a suitable return code on each request.

Commarea
Set to a communications area suitable for the server program to be linked to.

Commarea_length
Set to the length of the communications area.

ConnectionType
Returned by CICS on an ECI_STATE_SYNC call.

CicsClientStatus
Returned by CICS on an ECI_STATE_SYNC call.

CicsServerStatus
Returned by CICS on an ECI_STATE_SYNC call.

Extended_Mode
Supported by CICS.

Note: In traditional CTG applications, extended mode encompasses a series of
one or more ECI requests to a server program, each executed with
SYNCONRETURN set off, followed by a final ECI request (to the same
server program) that is executed with SYNCONRETURN set on. This
final ECI call causes CICS to take a syncpoint on successful completion
of the server program, and any changes to resources made by the
server program to be committed.

When using the CICS Connector for CICS TS, all the LINK requests in
the CICS extended UOW, including the last, are executed with
SYNCONRETURN set off. Any changes to resources made by the server
program are committed by CICS at end of task or if the application
issues a syncpoint. This behaviour is consistent with that of CICS DPL.

Luw_Token
In extended mode, CICS returns a unique number denoting the unit of work
(UOW) token.

Chapter 4. The CICS Connector for CICS TS 77

Message_Qualifier
Ignored by CICS.

Password
Ignored by CICS.

Program
Set to the name of the program to be linked to.

Server
Set to the SYSID of the CICS region which owns the program to be linked to.
You can set this value explicitly. However, the recommended method is to set a
null value here, and to rely on the PROGRAM definition to specify the location
of the server program, and whether or not dynamic routing should occur.

SystemList
Contains a list of CICS server regions, each CICS denoted by its SYSID. This
list is returned by the connector on a CICS_EciListSystems request.

The CICS Connector for CICS TS returns a list consisting of only one item—the
“CICS default list entry”, which has a SYSID of “ ” (4 spaces). CICS treats
this SYSID as null; setting the Server attribute of the ECIRequest object to this
value causes CICS to run the server program locally.

Transid
Optionally, can be set to the name of the transaction to be used as the mirror
transaction on the remote region. The default is an empty string (“”).

Userid
Ignored by CICS.

JavaGateway
Set the attributes of your JavaGateway object as follows:

Port
Ignored by CICS.

Server
Set as follows:

auto://tcpipaddr/
Supported, provided that the TCP/IP address is that of the host that CICS is
running on.

local://
Supported.

http://tcpipaddr/
Not supported.

tcp://tcpipaddr/
Not supported.

Normally (because the CICS enterprise bean you are creating will run on the
same host as the CICS Transaction Gateway) you would set strGatewayURL to
local://.

SetClientSecurity
Ignored by CICS.

SetServerSecurity
Ignored by CICS.

78 CICS Transaction Server: Release Guide

Benefits
1. The CICS Connector for CICS TS helps you to build powerful enterprise beans

that make use of existing CICS programs.

2. The connector enables you to exploit VisualAge for Java Enterprise Access
Builder, and similar tools, to develop enterprise beans rapidly.

3. The enterprise beans that you build:

v Enable programmers of Java client applications, who typically have little or no
knowledge of CICS, to add the power of CICS to their applications.

v Can be used by Java client applications, applets, and servlets running on
many platforms.

Requirements
The software requirements for the CICS Connector for CICS TS are:

1. The CICS Transaction Gateway for OS/390 Version 3.12. This is shipped with
CICS.

2. If the CICS server program is to run on a separate back-end CICS region (the
usual case), the back-end region must support distributed program link (DPL)
calls.

Restrictions and recommendations for the CICS Connector for CICS
TS

The following restrictions and recommendations apply to the CICS Connector for
CICS TS:

1. The CCF Interface

The values you can assign to some attributes of CCF objects are restricted:

ECIInteractionSpec objects
v Mode must be set to MODE_SEND_RECEIVE.
v ProgramName must be set.

This request maps to an EXEC CICS LINK PROG() {SYSID()} {SYNCONRETURN}
command.

CICSConnectionSpec objects
GatewayURL must be either of the following:

local://
auto://tcpipaddr:portno/

where tcpipaddr is the TCP/IP address of the host CICS.

2. CTG API

The values you can assign to some attributes of CTG objects are restricted:

ECIRequest objects
Call_Type must be one of the following:

ECI_STATE_SYNC
Returns the status, which is a single value made up of the following
components:
ECI_CONNECTED_TO_SERVER
ECI_SERVERSTATE_UP
ECI_CLIENTSTATE_INAPPLICABLE

Chapter 4. The CICS Connector for CICS TS 79

ECI_SYNC
Has the same semantics as ECI_SYNC_TPN. The program name must
be set and, optionally, the server name (which is used as the SYSID).

This request maps to an EXEC CICS LINK PROG() {SYSID()}
{SYNCONRETURN} command.

ECI_SYNC_TPN
Has the same semantics as ECI_SYNC. The program name must be
set and, optionally, the server name (which is used as the SYSID).

This request maps to an EXEC CICS LINK PROG() {SYSID()}
{SYNCONRETURN} command.

JavaGateway objects
Server must be either of the following:

local://
auto://tcpipaddr:portno/

where tcpipaddr is the TCP/IP address of the host CICS.

3. Transaction commit point

If the target server program is local to the region on which the connector runs,
or is remote and the request mode is extended (ECI_EXTENDED):
v The transaction is committed at end-of-task or SYNCPOINT
or
v Can be backed out by a SYNCPOINT ROLLBACK request.

If the target server program is remote and the request mode is not extended
(ECI_NO_EXTEND):
v The transaction at the back-end is committed on return (SYNCONRETURN).
v The local transaction is committed at end-of-task or SYNCPOINT, or can be

backed out by a SYNCPOINT ROLLBACK request.

4. The connector does not support explicit commit or backout commands.

5. Connector applications must be in JVM mode.

6. It is recommended that, for improved performance, you run the CTG classes on
the trusted middleware classpath.

7. All connector requests must be made on the primary thread for the process.

Installation
The CICS Connector for CICS TS consists of two parts:
1. A platform-specific library of native functions, libCTGJNI.so
2. The CICS Transaction Gateway for OS/390 Java classes.

Both the libCTGJNI.so library and the CICS Transaction Gateway for OS/390 Java
classes are automatically installed when you install CICS.

Check that the library path used by the CICS JVM includes the directory which
contains the libCTGJNI.so library. CICS installs libCTGJNI.so into the
/usr/lpp/cicsts/cicsts21/lib directory (where cicsts21 is the value of the
CICS_DIRECTORY variable used by the DFHIJVMJ job during CICS installation).

If you need to modify the library path used by the CICS JVM, edit the LIBPATH
statement in your JVM profile.

Note: The LIBPATH statement in the default JVM profile, DFHJVMPR, already
includes the /usr/lpp/cicsts/cicsts21/lib directory. If you are using the
default profile no changes are necessary.

80 CICS Transaction Server: Release Guide

CICS installs the CICS Transaction Gateway for OS/390 Java classes in an HFS
directory that is in the “trusted middleware” classpath used by the CICS JVM. (For
CICS JVM purposes, the CICS Connector for CICS TS is classified as trusted
middleware.).

To complete the installation, ensure that the ccf.jar file is in the trusted middleware
classpath. The ccf.jar file contains utility classes required by the CTG for OS/390
Java classes. It is supplied with VisualAge for Java Enterprise Access Builder and
as part of the EJB CICS sample application. If you have already installed the EJB
CICS sample application you need do nothing more. If not, you can find the ccf.jar
file in the EJB CICS sample directory on HFS. The default EJB CICS sample
directory is:
/usr/lpp/cicsts/cicsts21/samples/bankaccount

where cicsts21 is the value of the CICS_DIRECTORY variable used by the
DFHIJVMJ job during CICS installation.

Note: The recommended way to add files and directories to the trusted middleware
classpath is to specify them on either the TMPREFIX or TMSUFFIX
initialization option in your JVM profile.

Changes to CICS externals
The CICS Connector for CICS TS introduces several changes to CICS external
interfaces.

Messages
There are some new CICS messages in the range DFHCZ0150—DFHCZ0159.
These are described in the CICS Messages and Codes manual.

Trace points
Trace data can be output from either or both parts of the CICS Connector for CICS
TS:
1. From the library of CICS native functions, libCTGJNI.so. Use this trace

information to help debug a failure within CICS.
2. From the CICS Transaction Gateway for OS/390 Java classes. Use this trace

information to help debug a failure within the connector classes.

CICS trace
There are new CICS trace points in the range AP 21E7—AP 21E9. These are
described in the CICS Trace Entries manual.

To manage the output of CICS trace information from the connector, use CICS trace
control in the normal way.

CTG for OS/390 trace
How to switch on CICS Transaction Gateway for OS/390 tracing for the connector
depends on which of the connector’s interfaces you are using—the CCF interface or
the CTG API.

Tracing the CCF interface: How to switch on CICS Transaction Gateway for
OS/390 tracing when using the connector’ CCF interface is described in the HTML
documentation supplied with VisualAge for Java Enterprise Access Builder.

Chapter 4. The CICS Connector for CICS TS 81

Tracing the CTG API: To switch on CICS Transaction Gateway for OS/390 tracing
for the CTG API, append the following lines to the JVM properties file (the file
pointed to by the JVMPROPS statement in your JVM profile).
gateway.T=on
gateway.T.entry=on
gateway.T.lines=on
gateway.T.exit=on
gateway.T.stack=on
gateway.T.trace=on
gateway.T.timing=on

Notes:

1. You can set some of these switches to off, as required. The meanings of the
switches are as follows:
gateway.T=on/off

Set all debugging on or off.
gateway.T.entry=on/off

Set entry points on or off.
gateway.T.lines=on/off

Set general lines on or off.
gateway.T.exit=on/off

Set exit points on or off.
gateway.T.stack=on/off

Set stack dumps on or off.
gateway.T.trace=on/off

Set product-level tracing on or off.
gateway.T.timing=on/off

Set timing on or off.

2. In the CICS-supplied sample JVM properties files, dfjjvmpr.props (pointed to
by the default JVM profile, DFHJVMPR) and dfjjvmps.props, the above lines
are already present, with each switch set to off. If you use one of these
property files, simply turn on the switches that you require.

3. The switches could be set by the Java application program. For example:
System.setProperty("gateway.T","on"), and so on.

When trace is switched on, trace records are written to stderr. By default—that is,
unless the CICS JVM profile specifies otherwise—the JVM directs stderr to
dfhjvmerr.applid.time.taskid.txt. The dfhjvmerr file is written to the sub-directory
defined by the WORK_DIR entry in the JVM profile.

The EJB CICS sample application
The EJB CICS sample application uses the CICS Connector for CICS TS. The
sample implements an enterprise bean that uses the connector to link to back-end
CICS COBOL programs. The EJB CICS sample application is described in the Java
Applications in CICS manual.

82 CICS Transaction Server: Release Guide

Chapter 5. CICS support for the IBM persistent reusable JVM

This chapter describes enhancements to CICS support for the IBM Java™ Virtual
Machine. It covers the following topics:
v “Overview”
v “Benefits” on page 89
v “Requirements” on page 89
v “Changes to CICS externals” on page 89

Overview
CICS provides the support you need to run a Java application program in an
OS/390 Java Virtual Machine (JVM) executing under the control of a CICS region.
CICS support for the JVM allows you to run CICS application programs written in
Java and compiled to bytecode by a Java compiler at the IBM Developer Kit for
OS/390, Java 2 Technology Edition level.

The JVM provided by the IBM Developer Kit for OS/390, Java 2 Technology Edition,
with a special enhancement, is known as the persistent reusable JVM (resusable
JVM for short), and it includes two optimizations designed for the execution of CICS
transactions. These are:

v The serial reuse of a JVM for multiple transactions, avoiding most of the
initialization costs. Serial reuse entails resetting the state of the JVM between
uses.

v An optimized garbage collection scheme, enabled by the clean separation of
short lived application objects from the long-lived classes, objects and native
state (that is, non-Java or C language), which are reset.

These optimizations are explained in the following sections.

Enabling serial reuse
Serial reuse is enabled by dividing the classes contained in the JVM into three
parts:

v The OS/390 JVM code, which provides the base services in the JVM.

v The middleware, which provides services that access resources. These include
the JCICS interfaces classes, JDBC, JNDI, and so on.

v The user application.

Middleware classes have privileges that are not available to the application, and
which enable optimizations through the caching of state (loading of classes and
native libraries, for example) to be used by multiple applications. However,
middleware is also responsible to reset itself correctly at the end of a transaction
and, if necessary, to reinitialize at the beginning of a new transaction in order to
isolate different applications from each other. Classes are classified as middleware
by virtue of their inclusion on the ibm.jvm.trusted.middleware.class.path. The
trusted middleware class path property is built automatically by CICS from the paths
specified on the CICS_DIRECTORY, JAVA_HOME, TMPREFIX, and TMSUFFIX
parameters defined in the JVM profile (see the JVM profile parameters under
“Changes to JVM initialization parameters” on page 91).

Not all applications are able to exploit serial reuse. If the application uses Java
interfaces that modify the state of the JVM in a way that can’t be safely reset (such
as changing system properties, closing the standard output stream, or loading a

© Copyright IBM Corp. 2001 83

native library), the JVM is not reused. The storage used by the JVM is recovered
and a new JVM is initialized to provide a safe environment for subsequent
applications. The JVM monitors the use of interfaces that prevent safe resetting,
and the events that prevent reuse are logged.

Enterprise beans and CICS programs that execute on a single Java thread using
interfaces defined by the Enterprise JavaBeans specification, or by the JCICS
classes, are normally able to exploit serial reuse.

You can run the JVM in a mode that does not attempt serial reuse by specifying
Xresettable=NO in the JVM profile, but this should be necessary only if the
application needs to use Java facilities that modify the state of the JVM in an
uncontrolled way.

Application classes are defined as follows:

v For classes that are enterprise beans, CICS manages the loading of the JAR
files by means of the DJAR definitions.

v For classes that are executed directly through a CICS program definition, or
CORBA applications:

– By inclusion on the CLASSPATH setting in the JVM profile.

– By inclusion in the ibm.jvm.shareable.application.class.path system
property, defined in the system properties file referenced by the JVMPROPS
parameter in the JVM profile

Defining classes in the ibm.jvm.shareable.application.class.path system
property provides additional optimization by caching the classes in the JVM and
reinitializing them. This is the recommended configuration for the best
performance. If you use the CLASSPATH, classes are reloaded from HFS files each
time the JVM is reused.

v For utility classes:

– If the utility classes are used by enterprise beans, they must be defined in the
ibm.jvm.shareable.application.class.path system property.

– If the utility classes are used by classes that are executed directly through a
CICS program definition, the utility classes can be defined in CLASSPATH or
in the ibm.jvm.shareable.application.class.path system property.

OS/390 JVM classes have a special status that allows the objects they create to be
associated with middleware or the application, depending on the kind of class that
invokes their construction. The arrangement of the objects at run-time is explained
in more detail below. The OS/390 JVM classes do not need to be included on a
classpath.

The run-time structure of the JVM
The IBM reusable JVM manages run-time storage in several segregated heaps
whose characteristics can, to some extent, be individually tuned using parameters
in the JVM profile. These are:

The transient heap
This heap contains objects constructed by application classes, and any objects
constructed by OS/390 JVM classes as a result of calls from application
classes. It also contains any application classes, including their static data, that
are loaded from the CLASSPATH. Segregation of this heap from the middleware
heap improves performance of garbage collection.

84 CICS Transaction Server: Release Guide

#
#

#

#
#
#

#
#
#
#
#

#

#
#

#
#
#

The middleware heap
This heap contains objects constructed by middleware classes and any objects
constructed by OS/390 JVM classes as a result of calls from middleware
classes. It also contains static data for the middleware classes and the OS/390
JVM classes and other string constant data.

The system heaps
The main system heap contains the class definitions for all the classes except
those application classes loaded from the CLASSPATH that are reloaded every
time they are used. This includes the middleware class definitions and the
pooled string constant data.

The other system heap contains cached application class definitions. This is
called the application class system heap (ACSH).

How CICS manages the JVMs
CICS maintains a pool of JVMs, in which JVMs may be in use or available for
reuse, as shown in Figure 19.

Managing the size of the pool
Each JVM begins execution on an MVS TCB allocated from a pool of open TCBs
managed by CICS. Open TCBs can also be used for Java hotpooling, and the total
number of TCBs is limited by the MAXOPENTCBS system initialization parameter.
CICS controls the numbers of TCBs of each type and adjusts the number in
response to the work load. You should adjust the MAXOPENTCBS setting
according to the amount of storage below 16M that is available in your system. You
should also restrict the number of active transactions in the system (through the
MXT system initialization parameter, for example) to maintain a JVM pool that
always has JVMs free to satisfy new requests. CICS reduces the number of active
JVMs automatically if the work load does not require them.

Transient heap

(short lifetime)

Transient heap

(short lifetime)

A free JVM available for reuse,
having been reset

Pool of JVMs

Empty transient heap

Middleware and system
heaps

(long lifetime)

Middleware and system
heaps

(long lifetime)

Middleware and system
heaps

(long lifetime)

Figure 19. The reuse optimization from a JVM pool. In the figure, two of the JVMs shown are in use and contain
application objects in the transient heap, which is separated from long lived objects in system and middleware heaps.
The third JVM contains only long-lived objects and is available for reuse.

Chapter 5. CICS support for the IBM persistent reusable JVM 85

Selecting the right type of JVM
JVMs are allocated to a CICS transaction that requests execution of a Java
program. This is illustrated in Figure 20. The JVM characteristics (for example, heap
size and class path) required by the Java program are defined by naming a JVM
profile on the CICS program resource definition, which also indicates the static
main method that is the entry point of the application program. In the case of
enterprise beans, the entry point is the CICS CORBA request processor, supplied
with CICS.

The selection mechanism matches requests with a JVM that has the correct
configuration to run them. The configuration is identified by the profile name that
was used to create the JVM.

If CICS can’t find a JVM of the right type, and cannot create a new JVM because of
the MAXOPENTCBS limit, CICS re-initializes an existing JVM to ensure the
required characteristics. The best performance is achieved when there are many
more JVMs than the number of JVM types. The fewer the number of JVM types you
have, the more chance there is of an existing JVM matching the program
requirement, thus avoiding the overhead of re-initialization.

Request Java program execution

Create CICS Transaction

Select JVM
based on JVM profile name

JVMs configured
by profile A

JVMs configured
by profile B

Figure 20. Selecting a JVM from the pool to match a request

86 CICS Transaction Server: Release Guide

Use of resource definitions for JVM selection
The specification of the JVM environment suitable for a request is found by
reference to the CICS program definition. The program resource definition is
determined from the request, which could originate as one of the following:

v An EJB request that matches a REQUESTMODEL, which specifies a transaction
identifier

v A 3270 or START request that specifies a transaction identifier

v An EXEC CICS LINK request, or an ECI or EXCI call that names the program
directly

v An entry in a program list table post-initialization (PLTPI)

The first two of these types of request are shown in Figure 21.

In each case, a program definition is used to specify the name of the Java class
whose public static main method is to be invoked, and the characteristics of the
JVM needed to run it.

Figure 21 shows how various types of request are analyzed to determine the JVM
needed for execution. This is done by the request model, transaction and program
resource definitions, where the latter specifies the name of the JVM profile. The
resolution of the Java class name containing the entry point for the program is also
specified in the program resource definition, and is independent of the JVM type.
Note that, if CICS cannot find a request model resource definition that matches an
inbound request, CICS uses the CIRP transaction by default. The CICS-supplied
CIRP transaction invokes DFJIIRP, which requires the default JVM profile,
DFHJVMPR.

EJB or IIOP request
without matching

request model

RequestModel
'EJB2’

RequestModel
'EJB3’

Transaction
CIRP

Transaction
T3

Transaction
T2

Transaction
T1

JVMClass
com.user.app1

JVMClass
com.ibm.cics.iiop.RequestProcessor

Program
DFJIIRP

JVM Profile
DFHJVMPR

Program
PROG1

JVM Profile
USERJVM2

Program
USERORB1
JVM Profile
USERJVM1

3270
or

EXEC CICS START

Program link,
DPL or ECI

request

Figure 21. Determination of the JVM type

Chapter 5. CICS support for the IBM persistent reusable JVM 87

Debugging support in the CICS JVM
The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which
is the standard debugging mechanism provided in the Java 2 Platform. This
architecture provides a set of APIs that allow the attachment of a remote debugger
to a JVM. A variety of third party debuggers are available that exploit JPDA and can
be used to attach to and debug a JVM that is running an enterprise bean, CORBA
object or CICS Java program. Typically the debugger provides a graphical user
interface that runs on a workstation and allows you to follow the application flow,
setting breakpoints and stepping through the application source code, as well as
examining the values of variables.

You can find information about JPDA and JPDA-compliant applications at the web
site http://java.sun.com/products/jpda/.

In addition to the standard JPDA debug interfaces in the JVM, CICS provides a set
of interception points, which can be of value to the developers of debugging
applications. These interception points (or plugins) allow additional Java programs
to be inserted immediately before and after the application Java code is run.
Information about the application (for example classname and method name) is
made available to the plugin programs. The plugin programs can also use the
JCICS API to obtain information about the application. These interception points can
be used in conjunction with the standard JPDA interfaces to provide additional
CICS-specific debug facilities. See Java Applications in CICS for more details.

Restrictions
The Java 1.1 JVM supported by CICS TS 1.3 is not supported, and any Java
programs that executed under CICS TS 1.3 must be migrated to Java 2 to run
under the reusable JVM. Application migration issues are contained in documents at
http://java.sun.com/j2se/1.3/compatibility.html. Support for the reusable JVM
completely replaces the JVM support provided in CICS TS 1.3, but configuration
options allow the reusable JVM to be run in the same mode with small
modifications to your customized initialization options. This might be necessary to
execute programs that use Java interfaces that make the JVM non-resettable, such
as multi-threading. It might also be necessary for compatibility reasons: for
example, the old mode calls DFHJVMAT, which is not available in the new mode.

Native code migration issues are described by the read.me file that is in the doc
subdirectory when you have installed the IBM persistent reusable JVM.

A stack of programs formed by a succession of EXEC CICS LINK commands, or
JCICS program invocations within the same CICS task, cannot contain more than
one JVM. Distributed program link (DPL) requests are not restricted in this way.

Note: This is a restriction for CORBA client applications executing in Java, which
execute through the VisualAge for Java, Enterprise ToolKit for OS/390
bytecode binder in CICS TS Release 3 and can make local EXEC CICS
LINK calls (directly or through an intermediate program) to a JVM. In CICS
TS 2.1, the CORBA client applications execute in a JVM and cannot,
therefore, make the same call.

88 CICS Transaction Server: Release Guide

Benefits
Support for the reusable JVM enables significant optimizations compared with CICS
JVM support in CICS TS Release 3. The advantage is a reduction in the cost of
initialization for a Java application program. This applies to Java programs that are
invoked:
v As enterprise beans
v Through an EXEC CICS LINK command.
v Through an ECI, EXCI, or DPL call from outside CICS
v Through 3270 data streams.

Requirements
CICS JVM support requires a special enhancement to the IBM Developer Kit for
OS/390, Java 2 Technology Edition. This enhancement uses new IBM technology
that provides a persistent, reusable Java Virtual Machine. For information on how to
obtain the IBM Developer Kit for OS/390, Java 2 Technology Edition., go to the IBM
Web site at www.s390.ibm.com/java.

Changes to CICS externals
There are changes to a number of CICS external interfaces to enable CICS support
of the persistent reusable JVM. These are:
v “Changes to resource definition” on page 90
v “Changes to JVM initialization parameters” on page 91
v “Changes to the application programming interface” on page 97
v “Changes to the system programming interface” on page 98
v “Changes to CICS-supplied transactions” on page 100
v “Changes to user-replaceable modules” on page 100
v “Changes to monitoring and statistics” on page 101
v “Changes to problem determination” on page 101

Changes to system initialization parameters
There is a change to the range of TCB modes supported by the MAXOPENTCBS
system initialization parameter to support reusable JVMs. The details that follow
also cover the changes introduced for Java hotpooling:

MAXOPENTCBS={5|number}
Specifies the maximum number of open TCBs that can exist concurrently in the
CICS region. The open TCBs controlled by this parameter are as follows:

TCB mode Used by

J8 Java programs in a JVM running in CICS key.

H8 Java program objects defined with HOTPOOL(YES), running in CICS key

When specifying the MAXOPENTCBS number, take into account TCB storage
requirements: TCBs use real storage, and virtual storage below 16MB.

The default number is 5 open TCBs.

CICS manages a pool of open TCBs up to the limit set by MAXOPENTCBS. At
any one time, the pool can consist of some TCBs that are allocated to tasks,
and others that are free. For example, if the maximum number of open TCBs is
set at 100, at a particular time the pool could consist of 50 open TCBs, not all
of which are allocated. CICS attaches a new TCB when it can’t find a suitable
match with a free TCB.

Chapter 5. CICS support for the IBM persistent reusable JVM 89

CICS dispatcher uses two techniques in its management of open TCBs: (1) to
ensure that requests for an open TCB can be satisfied, and (2) minimize the
impact on resources by reducing the number of free TCBs in the OTE pool:

v If the MAXOPENTCBS limit has been reached and there is not a free TCB
of the required mode to satisfy a request, CICS looks for a free TCB of any
other mode. If there is a free TCB of another mode, CICS detaches the free
TCB and attaches a new TCB of the required mode. This technique is called
stealing. Although costly on performance, it allows the request to be satisfied.

v To minimize the impact on storage, CICS attempts to balance the number of
open TCBs against current needs by reducing the number of free TCBs.
Thus, if CICS finds that there are free TCBs in the pool it gradually removes
the excess number by detaching them, thereby freeing the resources used by
the excess TCBs.

CICS maintains statistics of excess TCB management and TCB stealing
activities.

Changes to resource definition
There are changes to the CICS PROGRAM resource definition. The JVMPROFILE
attribute is added, and the DEBUG option is removed from the JVM attribute. The
changes are illustrated in the following CEDA panel.

The descriptions of the new and changed attributes are as follows:

JVM({NO|YES})
Specifies whether or not the program is to operate under the control of a Java
Virtual Machine (JVM). The debugging option is removed from this parameter
and is specified in the JVM profile. The supported values are:

NO
The program is a compiled program object and cannot be run in a JVM.

YES
The program is a Java bytecode program and executes in a JVM.

Note: The DEBUG option is no longer supported, and is interpreted by
CICS as JVM(YES). You can continue to update definitions with the
debug option for use on the earlier release by using the CSD ALTER
command in compatibility mode.

OVERTYPE TO MODIFY CICS RELEASE = 0610
CEDA ALter PROGram(CBLTEST)
PROGram : CBLTEST
Group : TEST
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | Pli
.
.

JVM ATTRIBUTES
JVM : No No | Yes
JVMClass ==>

==>
==>
==>
==>

JVMProfile ==> DFHJVMPR

SYSID=HT61 APPLID=CICSHT61

90 CICS Transaction Server: Release Guide

JVMPROFILE(name)
Specifies the name of the data set member that contains the JVM profile. The
name must be a member of the data set that is referenced by DFHJVM DD
statement in the CICS startup JCL. The profile contains the JVM options for the
execution of the program. The default name of the member is DFHJVMPR. You
can customize this profile, and the member name, in a number of ways.

Changes to JVM initialization parameters
The JVM profile contains the initialization options that CICS uses to create the JVM.
You define a JVM profile as a member of a PDS with a DD name of DFHJVM,
which requires a DD statement in the CICS startup JCL. You can maintain JVM
profile members in a PDS using MVS text editing facilities in TSO.

Note: Some of the JVM initialization options are the same as those required by the
earlier version of the OS/390 JVM, some have changed in the reusable JVM,
and others are completely new. For completeness, all the options are
described in this section.

The profile specifies a set of values for JVM options that CICS uses to start the
Java virtual machine. One of these parameters, JVMPROPS, indicates the name of
an HFS file that contains the user-defined system properties.

The options defined in the JVM profile are divided into three groups: those that are
required only by CICS; the standard JVM options used when starting a new JVM;
and a set of nonstandard options, some of which are used for tuning, and others for
debugging in a development environment.

Note: All parameter keywords and options specified in the JVM profile are
case-sensitive, and must be specified exactly as shown in the following
sections.

Options required by CICS
This set of JVM profile options is required only by CICS to enable CICS to start the
JVM.

CICS_DIRECTORY=/usr/lpp/cicsts/cicsts21/
Specifies the path for the CICS Java /lib subdirectory and its JAR files. The
/usr/lpp/cicsts/ part of the path is fixed, and you are required to specify only
the fourth part of the path. By default, /lib is installed in
/usr/lpp/cicsts/cicsts21/, where cicsts21 is defined by the USSDIR
installation parameter when you installed CICS TS.

This parameter is required; together with the JAVA_HOME parameter, it is used
by CICS to build the basic ibm.jvm.trusted.middleware.class.path property
value.

INVOKE_DFHJVMAT={NO|YES}
Specifies whether or not the user replaceable module, DFHJVMAT, should be
invoked before creating a new JVM. If Xresettable=YES is also specified,
INVOKE_DFHJVMAT is ignored.

JAVA_HOME=/usr/lpp/java130s/J1.3/
Specifies the subdirectory into which IBM Developer Kit for OS/390, Java 2
Technology Edition subdirectories and JAR files are installed. By default, these
are installed in /usr/lpp/java130s/J1.3/, where /java130s/J1.3/ is defined
when you install IBM Developer Kit for OS/390.

Chapter 5. CICS support for the IBM persistent reusable JVM 91

This parameter is required; together with the CICS_DIRECTORY parameter, it
is used by CICS to build the basic ibm.jvm.trusted.middleware.class.path
property value.

JVMPROPS=file_name
Specifies the name of an HFS file that contains a sequence of named values.
For example, the file specified by JVMPROPS could set the
java.security.policy property by specifying
java.security.policy=file:/usr/lpp/cicsts/cicsts21/lib/security/dfjejbpl.policy.

Each property value is specified on a separate line and the property value is
delimited by the end of the line. Property values are passed to the JVM for the
construction of system properties as if specified by a -D option in a Java
command. CICS provides two sample properties files, dfjjvmpr.props and
dfjjvmps.props. These are referenced by the corresponding sample profiles,
DFHJVMPR and DFHJVMPS, as follows:

v Profile DFHJVMPR specifies JVMPROPS=dfjjvmpr.props

v Profile DFHJVMPS specifies JVMPROPS=dfjjvmps.props

The first of these sample files, dfjjvmpr, defines the properties you need for a
reusable JVM; the second is suitable only for a non-reusable JVM.

You should ensure that the file named by the JVMPROPS option is secure, with
update authority restricted to system administrators. This is because the
JVMPROPS file is typically used to define sensitive JVM configuration options,
such as the security policy file and the trusted middleware classpath.

LIBPATH
Specifies the directory path to be searched for the following programs:

v The IBM persistent reusable JVM

v Native C dll files loaded by the JVM.

The directory path set in the CICS-supplied JVM profiles (in members
DFHJVMPR and DFHJVMPS) includes the path to the native C dll files required
to support JCICS.

STDERR={dfhjvmerr|file_name}[-generate]
Specifies the name of the HFS file to be used for stderr. The file is created if it
does not exist. If the file already exists, output is appended to the end of the
file. On termination of the JVM, if the stderr file is empty, it is deleted.

The default name is dfhjvmerr. Note that for a fixed file name, the output from
multiple JVMs is appended to the named file, in the WORK_DIR directory, and
the output is interleaved.

-generate
Specifies that you want CICS to generate the output file name for a
specific JVM by appending the following qualifiers to the name supplied
on the generate option:

region The applid of the CICS region

time The current time in the form yydddhhmmss.

.txt A literal string suffix to indicate that the file contains readable
data and should be transferred with character translation by
tools such as FTP.

Note that -generate must be preceded by one blank.

92 CICS Transaction Server: Release Guide

#
#
#

##

##

##
#
#

#

Any stderr file that is empty at the end of the task is deleted.

STDIN={dfhjvmin|file_name}
Specifies the name of the HFS file to be used for stdin. The file is created if it
does not exist.

STDOUT={dfhjvmout|file_name}[-generate]
Specifies the name of the HFS file to be used for output to the stdout file. The
file is created if it does not exist. If the file already exists, output is appended to
the end of the file. On termination of the JVM, if the stdout file is empty, it is
deleted.

The default value is dfhjvmout in the directory specified on the WORK_DIR
parameter.

The -generate option operates in the same way as for stderr.

TMPREFIX=path_name
Specifies paths to be added to the trusted middleware classpath that CICS
generates automatically from the CICS_DIRECTORY and JAVA_HOME
parameter. The paths specified on TMPREFIX are inserted at the beginning of
the CICS-generated ibm.jvm.trusted.middleware.class.path system property.

TMSUFFIX=path_name
Specifies paths to be added to the trusted middleware classpath that CICS
generates automatically from the CICS_DIRECTORY and JAVA_HOME
parameter. The paths specified on TMSUFFIX are added to the end of the
CICS-generated ibm.jvm.trusted.middleware.class.path system property.

WORK_DIR={.|directory_name}
Specifies the HFS directory that is used by the CICS JVM interface when
creating the stdin, stdout and stderr files. A period (.) is defined in the
CICS-supplied JVM profiles in XDFHENV (in member names DFHJVMPR and
DFHJVMPS), which means you want to use the user directory of the CICS
region userid. If the CICS region userid does not have an OMVS user directory,
or if WORK_DIR is omitted altogether, /tmp is used as the HFS directory name.

Java standard options
The following Java standard options, which are included in the reusable JVM
implementation, are passed by CICS to the JVM when the JVM is being launched:

CLASSPATH=class_path
Specifies the directory path to be searched by the JVM for application classes
and resources.

SHOWVERSION={NO|YES}
Display version information and continue.

VERBOSE={NO|[class][,gc][,jni]}
Indicates whether or not the JVM should issue a message containing
information about its activities. You can specify any or all of the three available
options, or none. The options are:

NO Omit the verbose option so that the JVM does not report any of the
information messages described by the following options.

class Specifies that the JVM is to report information about each class it loads.
This equates to the standard JVM launcher option -verbose (or
-verbose:class) defined in the reusable JVM Java 2 specification.

gc Specifies that the JVM should issue a message to report each garbage
collection event. This equates to the standard JVM launcher option
-verbose:gc defined in the Java 2 specification.

Chapter 5. CICS support for the IBM persistent reusable JVM 93

jni Specifies that the JVM should issue a message each time it performs
one of the following Java native interface (JNI) operations:

v Dynamic link of a native method

v Registers a native method

v Loads a native library.

This equates to the standard JVM launcher option -verbose:jni defined
in the Java 2 specification.

Coding examples:

verbose=class
verbose=class,jni
verbose=gc

Java nonstandard options
The following parameters are nonstandard options that are supported by the
reusable JVM.

Xcheck={NO|[jni][,nabounds]}
Specifies whether or not you want the JVM to perform additional checks. There
are two options, and you can specify either of these or both.

jni Means perform additional checks for JNI functions

nabounds
Means perform additional checks for JNI array operations.

If you omit the jni option, also omit the comma in front of nabounds.

Xdebug={NO|YES}
Specifies whether or not debugging support is to be enabled in the JVM. See
also the Xnoagent and Xrunjdwp debug invocation options.

For more information, see the Java Platform Debugger Architecture (JPDA)
description at http://java.sun.com/products/jpda/doc/.

To ensure clean termination of the debug session, you are recommended to
specify Xresettable=NO.

Xinitacsh=size
Specifies the initial size of the application class system heap for resettable
JVMs . This option is ignored for JVMs that are not reusable .

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default is 128KB.

Xinitsh=size
Specifies the initial system heap size (class cache) for both resettable and
non-resettable JVMs. There is no maximum heap size enforced by the JVM.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default size is 128KB.

Xinitth=size
Specifies the initial transient heap size as a number of bytes. This is ignored for
non-reusable JVMs because all volatile objects are placed in the middleware
heap.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default size is 500MB.

94 CICS Transaction Server: Release Guide

Xmaxe=size
Specifies the maximum heap expansion size for the middleware heap.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default size is 0 (there is no maximum heap
expansion size).

Xmaxf=percent
Specifies the maximum free heap percentage size for the middleware heap.
The default is 0.6 (60%)

Xmine=size
Specifies the minimum heap expansion size for the middleware heap.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default is 1MB.

Xminf=percent
Specifies the minimum free heap percentage size for the middleware heap. The
default is 0.3 (30%)

Xms=size
Specifies the initial size of the middleware heap. A non-resettable JVM does not
have a transient heap, therefore all instances of objects are allocated in the
middleware heap.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default size is 500MB.

Xmx=size
Specifies the maximum total size of the middleware and transient heaps. In a
non-resettable JVM this option sets the maximum Java middleware heap size
only.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97). The default is 64KB.

Xnoagent={NO|YES}
Specifies whether or not you want CICS to include the Xnoagent option on JVM
launch command. Xnoagent disables the old sun.tools.debug agent. The Java
Platform Debug Architecture (JPDA) attaches its debug agent in a different way.
See the Java Debugger (JDB) description in the Java 2 SDK 1.3 specification
for more information.

Xnoclassgc={NO|YES}
Specifies whether or not you want CICS to include the Xnoclassgc option on
JVM launch command.

NO Omitting the option means that the JVM performs class garbage
collection.

YES The option is specified on the JVM launch command, which means that
class garbage collection is not performed.

Xoss=size
Specifies the maximum Java stack size for any thread.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97).

Xresettable={YES|NO}
Specifies whether the JVM is eligible to be reused again for execution of other
suitable Java programs.

Chapter 5. CICS support for the IBM persistent reusable JVM 95

YES
The JVM should be reused for execution of subsequent Java programs if
possible. This avoids the overhead of starting the virtual machine for each
execution of the program. The JVM profile must ensure, through the
settings of the trusted and application class paths, that the application code
is distinguished from trusted middleware (that is, services such as JCICS
and EJB interface classes). If applications are not correctly distinguished,
the state of the JVM at the termination of a program link requests is
uncertain, and can cause unpredictable behavior during subsequent
requests. The IBM persistent reusable JVM documentation explains the
distinction between application code and middleware in more detail.

NO
The JVM is to be initialized specifically for execution of the requesting
program.

Xrs={NO|YES}
Specifies whether or not you want CICS to include the Xrs option on the JVM
launch command. Xrs means reduce the use of operating system signals.

Xrunhprof=(suboption=string,suboption=string...)
Enables CPU, heap, or monitor profiling. This option is typically specified as a
list of sub-options of the form <suboption=string>, with each sub-option
separated by a comma. Run the command java -Xrunhprof:help to obtain a
list of sub-options and their default values.

Xrunjdwp=(suboption=string,suboption=string...)
Loads the JPDA reference implementation in-process debugging libraries and
passes any -Xrunjdwp sub-options specified. This library resides in the target
VM and uses Java virtual machine debug interface (JVMDI) and the Java native
interface (JNI) to interact with it. It uses a transport and the Java Debug Wire
Protocl (JDWP) to communicate with a separate debugger application. Run the
command java -Xrunjdwp:help to obtain a list of sub-options and their default
values.

See the Java Debugger (JDB) description in the Java 2 SDK 1.3 specification
for more information.

Xss=size
Specifies the size of stack for each new Java thread.

Specify size as a number of bytes, kilobytes, or megabytes (see “Specifying
storage sizes” on page 97).

Note: The default Java thread stack size is 1MB.

Xverify={remote|all|none}
Specifies the level of verification you want the JVM to perform on classes to be
loaded. When class files are loaded (possibly over the network or from an
untrusted source) into a JVM, there is no way of telling how its byte codes were
generated. The options are:

remote
Verify only those classes that are loaded over the network. The default
verification setting means that anything installed locally, through the
CLASSPATH, is not verified. This option equates to the Java command line
option Xverify:remote.

all Verify everything. This option equates to the Java command line option
Xverify:all.

96 CICS Transaction Server: Release Guide

none
Do not perform any verification. This option equates to the Java command
line option Xverify:none.

Specifying storage sizes: Specify sizes in multiples of 1024 bytes. Use the letter
K to indicate kilobytes, and the letter M to indicate
megabytes. For example, to specify 6291456 bytes as
the initial size of the middleware heap, code Xms in
one of the following ways:
Xms=6291456
Xms=6144K
Xms=6M

Samples
CICS provides a number of samples to help you define or alter JVM initialization
options. These are:

v DFHJVMPR, a JVM profile for a re-usable JVM, referenced by the program
definition that defines the CICS request processor.

v DFHJVMPS, a JVM profile that executes Java programs in the same way as in
CICS TS 1.3, without JVM reuse.

v DFHJVMAT, the sample user replaceable module, which resets stdout to a file
specific to the new task.

v DFHAPH8O, the sample user replaceable module that enables you to alter
Language Environment® run-time options.

v Two JVM properties files, dfjjvmpr.props and dfjjvmps.props, each of which
specifies a trusted middleware class path for the JVM.

The sample user replaceable modules are provided in the CICS SDFHSAMP library.
The JVM profiles and JVM properties files are supplied in XDFHENV.

Changes to the application programming interface
There are some additional RESP2 values and a new JVM plugin mechanism.

RESP 2 values
The new RESP2 values qualify the INVREQ response to EXEC CICS LINK
requests to report the conditions:

v A Java program cannot be executed because the JVMPOOL is DISABLED.

v The required JVM profile cannot be found or is invalid.

v The JVMPROPS file cannot be found or is invalid.

JVM plugin mechanism
In order to facilitate the debugging of enterprise beans and other Java programs
CICS provides a JVM debug plugin mechanism that allows the CICS Java
middleware to be customized by passing control at particular points to a user or
vendor written debugging program. There are three Java exit points:

v A CICS EJB container debug plugin providing methods that are called
immediately before and after an EJB method is invoked.

v A CICS CORBA debug plugin providing methods that are called before and after
a CORBA method is invoked.

v A CICS Java Wrapper plugin providing methods that are called immediately
before and after a CICS Java program is invoked

The programming interface consists of two Java interfaces. DebugControl (full
name: com.ibm.cics.server.debug.DebugControl) defines the method calls that can

Chapter 5. CICS support for the IBM persistent reusable JVM 97

be made to a user-supplied implementation, and Plugin (full name:
com.ibm.cics.server.debug.Plugin) provides a general purpose interface for
registering the plugin implementation. These interfaces are supplied in dfjwrap.jar,
and documented in JAVADOC HTML. See Java Applications in CICS for more
information.

Changes to the system programming interface
There are two new commands and changes to a number of existing commands.
These are:

v New commands for INQUIRE and SET JVMPOOL

v Changes to the INQUIRE and SET PROGRAM command

v Changes to the CREATE command

v A change to the COLLECT STATISTICS command

v A change to the PERFORM STATISTICS command.

INQUIRE JVMPOOL
The INQUIRE JVMPOOL command returns information about the pool of JVMs in
the CICS region. There can be only one pool of JVMs in a CICS region, therefore
there is no name or identifier required on this command.

CICS determines the information you request from the actual JVMs that are active
in the CICS region.

The following options are available on this command:

PHASEOUT(data-area)
returns a fullword binary field giving the number of JVMs that are marked for
removal from the JVM pool. These JVMs are still allocated to a task that is
currently executing, or has executed, a Java program in the JVM.

JVMs are marked for removal as a result of a CEMT (or EXEC CICS) SET
JVMPOOL PHASEOUT command. Note that the phaseout number also
includes JVMs whose owning tasks are being purged as a result of a SET
JVMPOOL PURGE or FORCEPURGE command but the tasks could not
immediately be purged.

STATUS(cvda)
returns a CVDA indicating the overall status of the JVM pool. The CVDA values
are:

ENABLED
The pool is enabled for use and Java programs can execute using
JVMs from the pool. This is the normal status.

DISABLED
The pool is disabled, and new requests cannot be serviced from the
pool. Programs can still be executing if they were started before the
JVM pool became disabled.

TOTAL(data-area)
returns a fullword binary field giving the number of all JVMs that are
pre-initialized to process CICS program link requests. This total includes JVMs
that are in the process of being terminated and removed from the region and
included on the PHASEOUT count.

98 CICS Transaction Server: Release Guide

SET JVMPOOL
The SET JVMPOOL command allows you to change the status of the pool of JVMs
in the CICS region or to terminate the JVMs in the pool. There can only be one
pool of JVMs in a CICS region, therefore there is no name or identifier required on
this command.

The following options are available on this command:

STATUS(cvda)
specifies whether new Java requests can be accepted and serviced by the JVM
pool. The CVDA values are:

ENABLED
The pool status is set to enabled for use and Java programs can
execute using JVMs from the pool.

DISABLED
The pool status is set to disabled, preventing new requests from being
serviced from the pool. Programs that were started before the
command was issued are allowed to execute to completion.

TERMINATE(cvda)
specifies that the JVM pool is to be terminated. The CVDA values are:

PHASEOUT
All JVMs in the pool are marked for deletion. The JVMs are actually
deleted when the CICS task is terminated.

PURGE
All JVMs in the pool are terminated using the CICS SET TASK PURGE
mechanism, and the JVMs are terminated.

FORCEPURGE
All tasks using JVMs in the pool are terminated by the CICS SET TASK
FORCEPURGE mechanism, and the JVMs are terminated.

INQUIRE PROGRAM
There are two changes to the INQUIRE PROGRAM command.

v The JVMPROFILE option is added to return the name of the PDS member that
specifies the environment variables (the profile) for the JVM needed to execute
the Java program.

v The JVMDEBUG option is obsolete. If you have applications programs that use
this option, CICS returns NODEBUG as the only cvda value.

SET PROGRAM
There are changes to the SET PROGRAM command.

v The SET STATUS(ENABLED|DISABLED) options are honored for programs that
are invoked through a CICS program link request. The command has no effect
on the same programs if they are invoked by Java programs through a method
call.

CREATE PROGRAM
The CREATE PROGRAM command is enhanced to support the new JVMPROFILE
attribute that is added to the program resource definition.

COLLECT STATISTICS
The JVMPOOL option is added to the COLLECT STATISTICS command to enable
you to collect statistics about a JVMPOOL. See “Statistics” on page 101 for details
of the JVMPOOL statistics available.

Chapter 5. CICS support for the IBM persistent reusable JVM 99

PERFORM STATISTICS RECORD
The JVMPOOL option is added to the PERFORM STATISTICS RECORD command
to enable you to record statistics for a JVMPOOL. See “Statistics” on page 101 for
details of the JVMPOOL statistics available.

Changes to the exit programming interface (XPI)
There are new options on the INQUIRE_PROGRAM call for the attributes added to
the program resource definition.

Changes to CICS-supplied transactions
The changes to the SPI are also applied to the equivalent CEMT INQUIRE and
SET commands:

v CEMT INQUIRE and SET JVMPOOL commands are added.

v JVMPROFILE is added to the INQUIRE PROGRAM command.

v JVMPOOL is added to CEMT PERFORM STATISTICS.

See “Changes to the system programming interface” on page 98 for details.

Changes to global user exits
The global user exit task indicator field, addressed by UEPGIND, which is part of
the DFHUEPAR standard parameter list, includes a new symbolic value for the
open TCB used for Java hot-pooling, This is represented in DFHUEPAR as both a
two-character code and a symbolic value, as follows:

Table 8. TCB indicators in DFHUEPAR. Description

Symbolic value 2-byte
code

Description

UEPTH8 H8 A Java hotpooling mode TCB

Changes to user-replaceable modules
There are changes to the program autoinstall user-replaceable module (URM), the
introduction of a new URM to define Language Environment run-time options for the
Language Environment enclave in which the JVM runs, and a change affecting the
invocation of DFHJVMAT.

DFHSJJ8O
This new URM contains Language Environment run-time options that are used to
construct the environment (the Language Environment enclave) in which the JVM
runs. It defines storage allocation parameters for heap and stack. You should need
to change the supplied version of the program only in exceptional circumstances.
Note that the initial heap size and the heap increment sizes defined by DFHSJJ8O
are for minimal values, and less than the minimum heap size for a typical JVM. The
actual amount of storage allocated for the Java heap is controlled by the Xmx
initialization option specified in the JVM profile.

The source for DFHSJJ8O is supplied in CICSTS21.CICS.SDFHSAMP library. For
information on how you can tailor this URM to your own requirements, see the
CICS Customization Guide.

Program autoinstall user-replaceable module
There is a change to the parameter list of the program autoinstall URM to support
the new parameter on a program resource definition. The addition to the parameter
list is:

100 CICS Transaction Server: Release Guide

PGAC_JVM_PROFID
This is an 8-byte field that specifies the name of the JVM profile to be used for
the JVM in which the program is to run. The profile is a member of the
XDFHENV PDS.

DFHJVMAT
Invocation of DFHJVMAT is restricted to the same events as in the previous release
of CICS; that is, initialization of a JVM that is to be destroyed at the end of the
program link request. DFHJVMAT is able to configure a JVM based on task-lifetime
data (for example, it can set stdout to a task-specific output stream).

DFHJVMAT is not called in the case of a JVM that is configured for reuse by
multiple tasks, because this would be inconsistent with identifying the JVM
characteristics with the profile name.

Changes to monitoring and statistics
There are changes to CICS monitoring and statistics in support of the reusable
JVM.

Monitoring
There are new performance class data fields added to the DFHTASK group in
support of the Java 2 JVM. See “Changes to monitoring data” on page 173 for
details.

Statistics
CICS provides new global statistics to provide:

v Total requests to JVM programs

v Total requests to JVM programs that map to a JVM that is a candidate for reuse

v Total requests requiring new JVMs to be initialized

v Total requests requiring new JVMs to be initialized because no suitable JVM is
available

v Total number of requests resulting in a JVM being terminated because of
application activity that fails isolation checks and leaves its JVM in an unusable
state.

All these statistics can be obtained by an EXEC CICS COLLECT STATISTICS
JVMPOOL command, and reset by the EXEC CICS SET statistics command.

The sample statistics program, DFH0STAT, is updated to report the new statistics.

Changes to problem determination
There are new messages added to aid problem determination in connection with
CICS JVMs. These new messages are identified by a new component code, SJ,
giving messages of the form DFHSJnnn.

See the CICS Transaction Server for z/OS Migration Guide for details of all new
and changed messages.

There is also a new AJxx abend code for a transaction that cannot execute
because its initial program requires a JVM but the JVMPOOL is disabled.

Chapter 5. CICS support for the IBM persistent reusable JVM 101

102 CICS Transaction Server: Release Guide

Chapter 6. Enhancements to CICS support of TCP/IP

This chapter describes the enhancements to CICS functions that use TCP/IP
through the CICS sockets domain, namely HTTP and IIOP:

v Socket management, which enables you to specify the maximum number of
sockets that the CICS sockets domain should have active at one time.

v Functions that are used by the enhanced CORBA support:

– Outbound socket support

– Asynchronous receive

– Lifetime management of sockets

The CICS Web interface was first introduced in CICS/ESA® 4.1, and significantly
enhanced in CICS TS 1.3, when the CICS Web support and the TCP/IP services
were segregated into their separate domains (the CICS Web (WB) domain and the
CICS sockets (SO) domain). CICS IIOP support was introduced in CICS TS 1.3 as
part of the AP domain, and this also uses the sockets domain services. Now, the
CICS IIOP services are further enhanced, and encapsulated in their own domain
(the CICS IIOP (II) domain).

The TCPIPSERVICE resource definition was introduced in CICS TS 1.3 to support
both HTTP and IIOP requests. Also, to enable the CICS TCP/IP support for these
protocols, the TCPIP system initialization parameter was added.

Note!
The TCPIP system initialization parameter and TCPIPSERVICE resource
definitions are for use only with the CICS-provided TCP/IP services for HTTP
and IIOP, and are not used by the TCP/IP Socket Interface for CICS (also
referred to as CICS TCP/IP for short). CICS TCP/IP is a feature of TCP/IP for
MVS that allows remote users to access CICS client/server applications over
TCP/IP internets. This sockets interface for CICS is supplied with OS/390
Communications Server, an integral part of OS/390, is not part of the CICS
product and does not use the CICS sockets domain.

The chapter covers the following topics:
v “Overview”
v “Benefits” on page 104
v “Requirements” on page 104
v “Changes to CICS externals” on page 104

Overview
The TCP/IP support provided by the CICS sockets domain is enhanced by the
addition of the following function:

Socket management
You can now specify the maximum number of sockets that the CICS sockets
domain can have active at one time. The number is specified initially in the SIT,
and can be changed dynamically with CEMT or the SPI.

The following functions are used by the enhanced CORBA support:

Outbound socket support
CICS can now initiate an IP connection.

© Copyright IBM Corp. 2001 103

Note: The term connection is used here in its IP sense; that is, a path
between two processes, rather than in its CICS sense of a collection of
sessions between two systems.

Lifetime management of sockets
When a socket is created, CICS specifies a lifetime for the socket. The lifetime
indicates to the Sockets domain how the socket should be shared by tasks, and
when it should be closed. The lifetime can be:

task One task may use the socket. The task can close the socket explicitly
at any time. If it does not do so, CICS closes the socket when the task
ends.

shared
Several tasks may use the socket concurrently. When a task issues a
close request for the socket, or when the task ends, CICS notes that
the task is no longer using the socket. CICS closes a shared socket
when no tasks are using it.

persistent
Several tasks may use the socket serially. A task may close a socket
explicitly at any time. If it does not do so, the socket remains open
when the task ends, and another task can use it. Normally CICS does
not close persistent sockets unless a task issues a closerequest.
However, when the number of active sockets reaches its maximum
number, CICS will close persistent sockets that are not in use so that it
can satisfy requests for new sockets.

Asynchronous receive support
A CICS task can now initiate a receive request without being suspended in the
Sockets domain while the receive request completes. When sufficient data is
available to satisfy the request, the Sockets domain issues a notification —
normally to the domain that issued the original request. The original receive
request is now re-issued, and is satisfied immediately.

Benefits
v The socket management function lets you constrain the use of resources by

tasks that use TCP/IP sockets.

v The following enhancements to TCP/IP support in CICS contribute to the benefits
of the enhanced CORBA support provided in this release:

– Outbound socket support

– Lifetime management of sockets

– Asynchronous receive support

Requirements
There are no specific hardware or software requirements for Enhancements to
CICS support of TCP/IP, over and above those for CICS Transaction Server for
z/OS, Version 2 Release 1 itself.

Changes to CICS externals
There are changes to a number of CICS external interfaces in support of enhanced
sockets support. These are:
v “Changes to system initialization parameters” on page 105
v “Changes to the system programming interface” on page 105

104 CICS Transaction Server: Release Guide

v “Changes to CICS supplied transactions” on page 106
v “Changes to monitoring and statistics” on page 107
v “Changes to samples” on page 107
v “Changes to CICS-supplied utilities” on page 107

Changes to system initialization parameters
There is a new system initialization parameter for enhanced sockets support:

MAXSOCKETS={number|65535}

number
Specifies the maximum number of IP sockets that can be managed by the
CICS Sockets domain.

If the userid under which the CICS job is running does not have superuser
authority, the maximum number of sockets that can be managed by the
sockets domain is limited to the value of the MAXFILEPROC parameter in
SYS1.PARMLIB member BPXPRMxx. If you specify a value greater than
this in the MAXSOCKETS system initialization parameter (or by letting
CICS use the default), CICS issues a message indicating the value that
CICS has used.

If the userid under which the CICS job is running has superuser authority,
up to 65535 sockets can be managed by the sockets domain.

Note that sockets created by Java programs running on threads that are not
managed by CICS do not count towards the MAXSOCKETS limit.

Changes to the system programming interface

INQUIRE TCPIP
Two options are added to the INQUIRE TCPIP command:

MAXSOCKETS(data-value)
returns a fullword binary field containing the maximum number of IP sockets
that can be managed by the CICS sockets domain.

ACTSOCKETS(data-value)
returns a fullword binary field containing the current number of active IP sockets
managed by the CICS sockets domain.

SET TCPIP
Two options are added to the SET TCPIP command:

MAXSOCKETS(data-value)
specifies, as a fullword binary field, the maximum number of IP sockets that can
be managed by the CICS sockets domain.

If the userid under which the CICS job is running does not have superuser
authority, the maximum number of sockets that can be managed by the sockets
domain is limited to the number specified in the MAXFILEPROC parameter in
SYS1.PARMLIB member BPXPRMxx. If you specify a greater value, CICS sets
the limit to MAXFILEPROC.

If the userid under which the CICS job is running has superuser authority, up to
65535 sockets can be managed by the sockets domain.

Note that sockets created by Java programs running on threads that are not
managed by CICS do not count towards the MAXSOCKETS limit.

Chapter 6. Enhancements to CICS support of TCP/IP 105

If you reduce the limit to less than the number of sockets currently active, CICS
prevents new sockets from being created until the number of active sockets
falls below the limit.

NEWMAXSOCKETS(data-value)
returns, in a fullword binary field, the new value of MAXSOCKETS.

If the userid under which the CICS job is running does not have superuser
authority, CICS may set the MAXSOCKETS limit to a smaller value than
requested. NEWMAXSOCKETS tells you the limit that CICS has set.

There are two new combinations of conditions and RESP2 values:

INVREQ
RESP2 value:

16 MAXSOCKETS is not in the range 1 through 65535.

NOTSUPERUSER
RESP2 value:

15 CICS was unable to set MAXSOCKETS to the value you requested,
because the userid under which the CICS job is running does not have
superuser authority. CICS has set the limit to the value of the
MAXFILEPROC parameter specified in SYS1.PARMLIB member
BPXPRMxx.

The following combination of conditions and RESP2 values can be returned on the
SET TCPIP command:

NORMAL
RESP2 value:

14 TCPIP has been opened, but some TCPIPSERVICEs have not been
opened because the MAXSOCKETS limit has been reached.

The following combination of conditions and RESP2 values can be returned on the
SET TCPIPSERVICE command:

INVREQ
RESP2 value:

14 The TCPIPSERVICE has not been opened because the MAXSOCKETS
limit has been reached.

COLLECT STATISTICS
A new option is added to the COLLECT STATISTICS command:

SOCKETS
Request global statistics for IP sockets.

Changes to CICS supplied transactions

CEMT INQUIRE TCPIP
Two options are added to the CEMT INQUIRE TCPIP command:

MAXSOCKETS(data-value)
returns the maximum number of IP sockets that can be managed by the CICS
sockets domain.

ACTSOCKETS
returns the current number of active IP sockets managed by the CICS sockets
domain.

106 CICS Transaction Server: Release Guide

CEMT SET TCPIP
Two new options are added to the CEMT SET TCPIP command:

MAXSOCKETS(data-value)
specifies the maximum number of IP sockets that can be managed by the CICS
sockets domain.

If the userid under which the CICS job is running does not have superuser
authority, the maximum number of sockets that can be managed by the sockets
domain is limited to the number specified in the MAXFILEPROC parameter in
SYS1.PARMLIB member BPXPRMxx. If you use the SET SYSTEM command
to specify a value greater than that in MAXFILEPROC, CICS resets the limit to
MAXFILEPROC. The message ″EXCEEDS HARDLIMIT″ is displayed when the
request is made.

If the userid under which the CICS job is running has superuser authority, up to
65535 sockets can be managed by the sockets domain.

Note that sockets created by Java programs running on threads that are not
managed by CICS do not count towards the limit.

If you reduce the limit to less than the number of sockets currently active, CICS
prevents new sockets from being created until the number of active sockets
falls below the limit.

ACTSOCKETS
displays the current number of active IP sockets managed by the CICS sockets
domain.

CEMT PERFORM STATISTICS
A new option is added to the CEMT PERFORM STATISTICS command:

SOCKETS
Request global statistics for IP sockets.

Changes to monitoring and statistics
There are changes to CICS monitoring data and statistics records as part of the
enhancements to CICS support of TCP/IP. See “Chapter 13. Monitoring and
statistics changes” on page 169.

Changes to samples
The statistics sample program, DFH0STAT, is changed to accommodate the new
statistics collected.

Changes to CICS-supplied utilities
The statistics sample program, DFHSTUP, is changed to accommodate the new
statistics collected.

Chapter 6. Enhancements to CICS support of TCP/IP 107

108 CICS Transaction Server: Release Guide

Chapter 7. Java Naming and Directory Interface™ (JNDI)

This chapter describes the Java Naming and Directory Interface (JNDI) support. It
covers the following topics:
v “Overview of JNDI in CICS”
v “Benefits of JNDI in CICS”
v “Requirements” on page 110
v “Changes to CICS externals” on page 110

Overview of JNDI in CICS
JNDI is an application programming interface specified in the Java programming
language that provides directory and naming function for Java applications. JNDI
also defines a service provider’s interface that allows various directory and naming
service drivers to be plugged in. See Figure 22.

With CICS support for Enterprise Javabeans technology, the JNDI application
programming interface (API) enables enterprise beans and other Java programs
running under CICS to look up a name or to locate an external enterprise bean in a
nameserver, which can then be invoked. Client Java programs can also use JNDI to
locate CICS enterprise beans and stateless CORBA objects.

The Java JNDI API and system programming interface (SPI) map to the CORBA
object services (COS) naming directory server.

Security
JNDI does not define an external security interface for accessing naming and
directory servers. Authentication or access control to the directory service are
controlled by individual service providers.

Benefits of JNDI in CICS
The JNDI enables client programs to locate CICS server applications, such as
enterprise beans and stateless CORBA objects, using a nameserver. Also,
enterprise beans and Java programs can locate, amongst other things, an
enterprise bean referenced by the local Java code so that a request can be sent to
it.

Use of JNDI with a nameserver means that you do not have to transmit object
references to all client locations.

Java Application

Naming Manager

JNDI SPI

JNDI API

DNS CORBA

Figure 22. JNDI structure

© Copyright IBM Corp. 2001 109

Requirements
JNDI provides an interface to a COS naming directory server, such as the one
provided by WebSphere Application Server Advanced Edition. This is supplied with
CICS TS to ensure you have a suitable COS naming directory server for use on a
Windows NT machine.

Changes to CICS externals
There are no changes to CICS externals in support of JNDI, but there are other
external interfaces that you need to define and use.

Other external interfaces
Object references can be registered in a nameserver from CICS by issuing the
commands PERFORM CORBASERVER PUBLISH, or PERFORM DJAR PUBLISH.
This is done automatically for you as part of the deployment process for enterprise
beans (see “Chapter 8. Deploying enterprise beans” on page 111), but you will
need to issue the command PERFORM CORBASERVER PUBLISH for a
CorbaServer used by stateless CORBA objects.

You need to define the CosNaming Server that CICS is to use. You do this on a
JVM property definition in the system properties file, which is specified on the
JVMPROPS parameter in the JVM profile.

The property name is java.naming.provider.url, and the value is specified as in
the following example:
java.naming.provider.url=IIOP://servername.hursley.ibm.com:900

Note: The protocol is always IIOP.

There is an example of the java.naming.provider.url system property (specified in
a comment line) in the sample dfjjvmpr.props system properties file supplied in
/usr/lpp/cicsts/cicsts21/props in the CICS TS 2.1 HFS.

Application programming interfaces
The CICS API does not provide support for naming directory services, but the Java
JNDI API contains provides directory and naming function for Java applications.

110 CICS Transaction Server: Release Guide

Chapter 8. Deploying enterprise beans

This chapter describes the features in CICS Transaction Server for z/OS provided
to facilitate the process of deploying enterprise beans into the CICS EJB server. It
covers the following topics:
v “Overview”
v “Benefits” on page 113
v “Requirements” on page 114
v “Changes to CICS externals” on page 115
v “CICS security considerations” on page 124
v “Installation and setup” on page 124

Overview
Deployment of enterprise beans has been introduced in the overview of the EJB
″story″ (see page 23 in Chapter 2. Introduction to Enterprise JavaBeans™). This
section explains the process in more practical terms.

The term “deployment” used in the EJB specification describes a series of tasks
that makes the enterprise beans in one or more JAR files available for use in a
specific operating environment (in this case, the CICS EJB server).

Some of the steps involved might be regarded as application programming tasks
(for example, code generation), and some as systems programming tasks (for
example the modification of runtime options). Here, that distinction is ignored, and
they are considered as steps in the deployment task.

Deployment begins with a JAR file that contains Java classes and can contain one
or more (usually many) enterprise beans. The steps in the deployment process are
as follows:

Step 1
Preparing an EJB 1.1 deployment descriptor in the JAR file.

Step 2
Adding generated code and CICS-specific bindings.

Step 3
Creating CICS resource definitions (either suitable for a CICS CSD, as
CICS in-core definitions, or for a CICSPlex SM data repository).

Step 4
Making the enterprise beans accessible to CICS by storing the ejb-jar file in
the HFS repository on z/OS.

Step 5
Publishing the CorbaServer name and enterprise bean names to an
external namespace using JNDI.

At the end of this process the ejb-jar file is deployed to the CICS system, and
available to be used.

CICS provides several tools to facilitate this process. These are illustrated in
Figure 23 on page 112.

© Copyright IBM Corp. 2001 111

The starting point is a JAR file containing one or more enterprise beans with or
without a deployment descriptor. If you are using an integrated development
environment, you can generate a deployment descriptor automatically. VisualAge for
Java Enterprise Edition version 3.5, for example, incorporates an EJB development
environment that can create ejb-jar files with EJB version 1.0 deployment
descriptors.

The first part of the deployment process is the preparation of the deployment
descriptor. The CICS JAR development tool for EJB technology is an editing tool
designed to help you do this. It provides a GUI interface that enables you to create
or edit the ejb-jar file’s deployment descriptor together with some optional CICS
specific customizations. It also converts EJB 1.0 serialized deployment descriptors
into the EJB 1.1 XML equivalents required for the next stage of deployment.

The next stage is code generation. Incorporated into the CICS JAR development
tool is the CICS code generation utility for EJB technology. This tool
automatically generates the code required to tailor a generic enterprise bean into
one that can run in an EJB server including the CORBA stubs and ties needed for
RMI/IIOP communication. It can optionally produce a ClientJAR file, which contains
only the home and remote interfaces for the enterprise beans in the JAR file,

JAR file EJB 1.0 JAR EJB 1.1 JAR

CICS Code Generation
Utility

CICS JAR Development
Tool

ejb-jar file

CICS Production
Deployment Tool

ejb-jar file

CICS Development
Deployment Tool

CICS in-core
definitions

EXEC CICS CREATE

CICS test region

CSD

Input for DFHCSDUP/
BATCHREP

CICS production
environment

Client JAR file

Figure 23. The process of preparing and deploying an ejb-jar file.

112 CICS Transaction Server: Release Guide

together with their RMIC stub classes. This enables client applications to install only
this smaller ejb-jar file instead of an instance of the whole output ejb-jar file.

The CICS code generation utility can also be run separately in an MS-DOS
command prompt window and can be used in a batch process. The result of this
process is one or more EJB 1.1 JAR files.

The final stages of deployment involve the creation of CICS resource definitions,
publishing bean references to an external namespace, and making the ejb-jar file
accessible to CICS. There is a choice of tools for these operations.

The CICS development deployment tool for EJB technology provides a route
that simplifies the creation of the CICS definitions in order for application
programmers with a minimum of CICS expertise to test enterprise beans in a CICS
test environment. The tool stores the ejb-jar file in HFS on z/OS and creates a set
of generic CICS resource definitions using EXEC CICS CREATE commands. It
does not update the CICS CSD. CICS resource definition information is stored in
the ejb-jar file for possible later reuse by this or the alternative deployment tool. It
also uses the CICS API to store a reference to each enterprise bean in an external
namespace on the WebSphere Application Server using JNDI.

The alternative is the CICS production deployment tool for EJB technology.
This tool enables you to specify in detail the necessary CICS resource definitions.
This tool can create ejb-jar files ready to store on HFS. It also produces a
DFHCSDUP input stream that you can use to define the necessary CICS resource
definitions on the CICS CSD or a BATCHREP input stream to create definitions on
the CICSPlex SM data repository. Like the CICS development deployment tool it
stores CICS resource definition information in the ejb-jar file for use in a later
deployment process. You can run this tool either via a GUI on your workstation, or
as an off-line utility.

Enterprise bean development might involve successive uses of the development
deployment tool and the production deployment tool. JAR files created using the
CICS development deployment tool and run on a CICS test region can be passed
to the CICS JAR development tool or the CICS production deployment tool for
refinement before deployment to a CICS production environment. It is also possible
to pass ejb-jar files from the CICS production deployment tool to the CICS JAR
development tool or the CICS development deployment tool for modification or
further testing. Both deployment tools can reuse CICS resource definitions stored in
the ejb-jar file in previous sessions.

Benefits
Deployment is an essential part of the overall benefit brought to CICS application
development by EJB support. This has been described already (see page 31).

The following tools provide support to help you complete the various sub-processes
of deployment.
The CICS JAR development tool for EJB technology

v Accepts JAR files that have an EJB version 1.0 deployment descriptor, or
an EJB version 1.1 deployment descriptor, or no deployment descriptor.

v Displays the content of the deployment descriptor, if any.
v Enables you to supply or alter deployment descriptor information.
v Enables you to save the result, and saves it as an EJB version 1.1

deployment descriptor.

Chapter 8. Deploying enterprise beans 113

The CICS code generation utility for EJB technology
Automatically generates the code required to tailor a generic enterprise
bean into one that can run in an EJB server. It is incorporated into the CICS
JAR development tool, but can also be run in an MS-DOS command
prompt window, and can be used in a batch process.

The CICS development deployment tool for EJB technology
Makes it possible for an application programmer to deploy and test
enterprise beans in CICS without having to understand the details of the
CICS-specific customization required in the deployment descriptor or the
CICS resource definitions that enable the enterprise beans to run in the
CICS EJB server. It also stores CICS resource definition in the ejb-jar file
for later reuse.

The CICS production deployment tool for EJB technology
v Enables you to add CICS resource definition information to the

deployment descriptor in the ejb-jar file.
v Enables you to provide values for the environment entries in the EJB

attributes in the deployment descriptor in the ejb-jar file, or to change
them.

v Enables you to provide values for the Container Binding entries in the
deployment descriptor in the ejb-jar file, or to change them.

v Enables you to store your ejb-jar file in HFS ready for use. (There are
limitations on this action which are described in the detailed description
of the tool).

v Enables you to generate resource definition statements in either or both
of the following formats:
– Ready to be processed by DFHCSDUP.
– Ready to be processed by BATCHREP.

Requirements

Hardware
The additional hardware requirements for the CICS EJB deployment tools are as
follows:

v A client PC platform capable of running Microsoft Windows NT or Microsoft
Windows 2000 together with your Java development environment, such as
VisualAge for Java. The recommended minimum is 266MHz, 64Mb.

v A Windows NT or Windows 2000 server platform capable of running WebSphere
Application Server.

Software
The additional software required for the CICS EJB deployment tools is as follows:

v One of the following operating systems for your workstation

– Microsoft Windows NT, version 4.0, or later

– Microsoft Windows 2000.

v Websphere Application Server version 3.5 (This is required for the CICS
Development Deployment tool and for the run time operation of the CICS EJB
server. It is not required for the operation of the other CICS deployment tools.)

v IBM Developer Kit for Windows, Java 2 Technology Edition, Version 1.3, at
Service Release 6 (or later), plus the EJB 1.1 standard interface classes,
provided in javax.ejb.zip and j2ee.jar. (The IBM Developer Kit for Windows,
Java 2 Technology Edition, Version 1.3 at Service Release 6, is supplied with
CICS TS on a CD-ROM labeled CICS Tools for EJB Technology, LCD4–4355.)

114 CICS Transaction Server: Release Guide

v One of the follow Web browsers:

– Netscape Communicator version 4.5, or later

– Microsoft Internet Explorer version 5.00, or later

Changes to CICS externals
CICS support for the EJB deployment process involves only minor changes to CICS
external interfaces. Instead the deployment process is facilitated by several new
stand-alone workstation-based tools. These are:

v “The CICS JAR development tool for EJB technology”

v “The CICS code generation utility for EJB technology” on page 118

v “The CICS development deployment tool for EJB technology” on page 120

v “The CICS production deployment tool for EJB technology” on page 121

Other changes are described in “The final stages of deployment” on page 122,
“JVM plugin mechanism” on page 97, and “Problem determination” on page 123.

The CICS JAR development tool for EJB technology
The CICS JAR development tool is a Java-based GUI editor that runs on your
workstation. It is used to edit an ejb-jar file containing one or more enterprise beans
in order to prepare a deployment descriptor. This tool also invokes the CICS code
generation utility, which generates additional code required for deployment to the
CICS EJB server.

For each enterprise bean, the ejb-jar file must include the following:

v The enterprise bean implementation

v The remote interface

v The home interface

The ejb-jar file can also contain the class files for all the classes and interfaces that
the enterprise bean class, and the remote and home interfaces depend on. This
includes their super-classes and super-interfaces, and the classes and interfaces
used as method parameters, results, and exceptions. These class files can be
made available from another JAR file (not necessarily an ejb-jar file).

Before the ejb-jar file can be deployed to the CICS EJB server it must also contain
the deployment descriptor, bindings for any resources and references contained in
the deployment descriptor, and all the generated code required for RMI/IIOP and
EJB operation. You can use the CICS JAR development tool to create this extra
information.

Preparing the deployment descriptor
The deployment descriptor is an important feature of the EJB specification. It allows
the declarative specification of run time attributes for the enterprise beans avoiding
the need to code the equivalent information into the beans themselves. This means
that you can change these values at deploy time without having to rewrite and
compile the enterprise bean classes.

In the EJB version 1.0 specification a deployment descriptor is a number of
serialized Java objects (one per enterprise bean) stored in the ejb-jar file. In EJB
1.1, a deployment descriptor is a single XML document containing the deployment
data for all the enterprise beans in the ejb-jar file. This tool creates only EJB 1.1

Chapter 8. Deploying enterprise beans 115

style deployment descriptors but it can read either style. You can use it to create or
edit deployment descriptors, and to convert EJB 1.0 deployment descriptors to the
EJB 1.1 equivalent.

A deployment descriptor contains two kinds of information:

v Structural information that describes the structure of an enterprise bean and
declares the bean’s external dependencies.

v Application assembly information that describes how the enterprise bean (or
beans) in the ejb-jar file is composed into a larger application deployment unit.

You should not normally change structural information because doing so could alter
the enterprise bean’s function. You can change assembly level information without
altering the enterprise bean’s function, although doing so may alter the behavior of
an assembled application.

Code generation
Code generation is the process of creating in the ejb-jar file the following generated
code:

v RMI/IIOP stub classes based on the home and remote interfaces within the
source ejb-jar file. These interfaces allow enterprise beans to be invoked
remotely.

v Additional classes used by the container to honor the information stored in the
deployment descriptor including the classes that implement the bean’s home and
remote interfaces.

v The communication stubs used on the client.

Code generation is carried out by the CICS code generation utility. There are two
ways to invoke this utility

v From the CICS JAR development tool GUI using the Generate command on the
File menu.

v Directly from an MS-DOS command prompt window on your workstation, or from
the run option on the Windows start menu.

See “The CICS code generation utility for EJB technology” on page 118 for more
information about using the CICS code generation utility as a stand-alone tool.

Using the CICS JAR development tool

Before starting: The enterprise beans in your ejb-jar may have dependencies on
other Java classes. These will often be in other JAR files. In order to analyze the
enterprise beans, and in particular in order to perform code generation, these other
JAR files need to be available to the CICS JAR development tool and to the CICS
code generation utility. Typical examples would be the ccf.jar, recjava.jar and
eablib.jar files exported from VisualAge for Java which contain the Connector,
Record Framework and Enterprise Access Builder information that people use in
their beans.

These additional JARs have to be on your classpath before you invoke the tool.
″Start->Settings->Control Panel->System->Environment″ is one way to do it.

You will need the Sun standard EJB interfaces (2 jar files) and add them to your
classpath before starting the tools.
v The EJB 1.1 standard interface classes are required on your classpath before

running the CICS JAR development tool or the CICS code generation utility.
These classes are available either in file ejb11.jar which is shipped in the IBM

116 CICS Transaction Server: Release Guide

Developer Kit (at the SDK 1.3 level) Service Release 6 or later , or in file
j2ee.jar which is shipped in the Sun J2EE SDK.

v The EJB 1.0 standard interface classes are required on your classpath before
running the CICS JAR development tool if the facility to migrate EJB 1.0
enterprise beans to EJB 1.1 is required. These classes are available in file
javax.ejb.zip which can be obtained from http://java.sun.com

Note: These files are also available on the CICS deployment tools CD-ROM.

Using the tool: To invoke the CICS JAR development tool, use the menu option
of the Windows NT (or Windows/2000) Start menu, Programs, IBM CICS TS 2.1
Tools, CICS Jar Development Tool for EJB Technology.

Alternatively the CICS JAR development tool may be started from an MS-DOS
command prompt window using the command:
CICSJDT [filename.jar [-auto]] [-font(xx)]

where:

CICSJDT
is the batch file to be run. Before using the CICSJDT command, ensure that
the directory which contains CICSJDT.BAT file is available on your system’s
PATH statement. It is normally found in C:\Program Files\IBM\CICS TS 2.1
Tools\JAR Development Tool\bin

[filename.jar]
is your input JAR file. If you do not specify it on the command line you can
specify it in the GUI.

[-auto]
indicates that the CICS JAR development tool is to load and then
immediately save the specified JAR file. This can be useful for converting
any EJB 1.0 deployment descriptors in the jar file to an EJB 1.1 XML
deployment descriptor without user interaction. The parameter is optional,
but only available if you specify an input JAR file. It is only relevant if the
CICS JAR development tool is run from the command prompt.

[-font(xx)]
indicates the font size which is to be used by the GUI instead of the default
size. xx is the desired font size, the minimum value permitted is 10. The
parameter is optional. It is only available if the CICS JAR development tool
is run from the command prompt.

The GUI main panel has options to load and save JAR files, and it displays a
scrollable list of the enterprise beans in the current loaded JAR file. Each enterprise
bean is identified by its bean name.The panel has buttons providing the following
operations:

New - Create a new enterprise bean entry in the deployment descriptor, with
default properties.

Copy - Create a new enterprise bean entry in the deployment descriptor, with
properties copied from an existing entry.

Edit - Edit the properties of an enterprise bean entry in the deployment
descriptor

Delete - Delete a deployment descriptor

Chapter 8. Deploying enterprise beans 117

JAR Details
- Edit JAR file level attributes in the deployment descriptor

Bindings
- Bring up a view that allows a JNDI binding to be specified for any
enterprise bean reference or resource in the deployment descriptor.

CICS Options
- Bring up a view that allows you to specify a CICS TRANSID against any
part of the deployment descriptor that requires a REQUESTMODEL
resource definition later in the deployment process.

The panel also has a message and status line, with a button that brings up a status
log dialog displaying a scrollable message history. This can be saved to a file if
required.

There is online help available while using the CICS JAR development tool, and for
further detail about the tool, see Java Applications in CICS

The CICS code generation utility for EJB technology
The CICS code generation utility opens an ejb-jar file, verifies each Enterprise bean
in the file, then creates the additional EJB and RMI classes for each Enterprise
bean, that will be needed at runtime. It also excludes entity beans from the output
ejb-jar file.

Refer to “Before starting” on page 116 for information about your classpath before
proceeding.

You can invoke the CICS code generation utility from the CICS JAR development
tool, or you can run it stand-alone, either in an MS-DOS command prompt window
on your workstation, or from the run option on the Windows start menu.

The command to start the CICS code generation utility as a stand-alone tool is:
CICSCGU inputjarfile [workingdir] [outputjarfile] [clientjarfile] [options]

where:

CICSCGU is the batch file to be run. Before using the CICSCGU command,
ensure that the directory which contains CICSCGU.BAT file is
available on your system’s PATH statement. It is normally found in
C:\Program Files\IBM\CICS TS 2.1 Tools\JAR Development
Tool\bin

inputjarfile is the filename of the input ejb-jar file.

[workingdir] is the directory name for temporary storage of extracted files and
generated classes. It is not required if the -analyze option is
selected.

[outputjarfile] is the filename of the output ejb-jar file, which contains the
additional code generated by this tool. It is not required if the
-analyze option is selected.

[clientjarfile] is the filename of an output ejb-jar file, which contains only the
home and remote interfaces for the enterprise beans in the JAR
file, together with their RMIC stub classes. It is not required if the
-analyze option is selected, and is only required if you want to
produce a ClientJAR file.

118 CICS Transaction Server: Release Guide

The ability to produce a ClientJAR file means that client
applications no longer need to have the whole output ejb-jar file
installed on their client machines with their client applications, just
this smaller ejb-jar file.

The ClientJAR file needs no further processing by the CICS
deployment tools for EJB technology. It is ready to be placed in the
client according to the requirements of the client environment.

[Options]

-analyze only verify Enterprise beans in input jar file, do not
generate additional classes. If you specify -analyze,
[workingdir] [outputjarfile] and [clientjarfile] are not
required.

Default action is: Both analyze and generate
classes.

-codegen only generate EJB server implementation classes,
do not verify Enterprise beans

Default action is: Both analyze and generate
classes.

-force ignore verification errors

Default action is: On finding errors, issues
messages and does not proceed with code
generation.

-J<suboption>
pass suboptions to the JVM which is used to invoke
the RMIC compiler (for example: —Jmx128M, to set
maximum heap size)

Default action is: No additional options are passed
to the JVM.

-keep preserve the working directory and generated files

Default action is: Delete the working directory and
contents.

-nocompress do not compress the deployed jar file

Default action is: Compress the JAR file.

-noRMIC do not generate RMIC stubs or ties

Default action is: Generate the RMIC stub and ties.

-verbose turn on tracing

Default action is: Suppress the verbose output.

When invoked from the CICS JAR development tool by using the Generate
command on the File menu, the inputjarfile value is supplied by the CICS JAR
development tool, you can specify the outputjarfile, and a clientjarfile, and, if you
require, the verbose and keep options. The utility chooses a workingdir and the
remaining options take their default values.

The tool issues error messages if it encounters entity beans in the ejb-jar file, but it
continues to process any session beans.

Chapter 8. Deploying enterprise beans 119

The CICS development deployment tool for EJB technology
The CICS development deployment tool provides a method of deploying a 1.1
ejb-jar file into CICS directly from a development workstation without the need to
define detailed CICS resource definitions. The purpose of this is to allow EJB
application developers with minimal or no CICS knowledge to deploy enterprise
beans into a CICS unit test environment. It is designed as an alternative to the
CICS production deployment tool but is not appropriate for deploying enterprise
beans into a CICS production environment.

The interface between the application programmer and this tool is a standard Web
browser. The application programmer enters user ID and password information, the
name and location of the 1.1 ejb-jar file to be deployed, and selects the CICS
CorbaServer into which the enterprise beans are to be deployed.

The system programmer maintains control of the environment by means of the
deployment configuration file (DCF). This is an XML file which specifies user and
CorbaServers information as well as a number of other parameters that relate to the
operation of the tool.

In operation the tool starts by initializing a Web application running on the
Websphere Application Server. The Web application parses the DCF to load and
validate information specified by the system programmer. Once this is successful,
the application developer can connect to WebSphere to communicate with the Web
application. Information entered by the application developer is validated and the
enterprise beans are uploaded to the WebSphere platform.

The Web application extracts from the DCF the transaction ID associated with the
selected CorbaServer. The WebSphere-specific bindings information is extracted
from the ejb-jar file together with any CICS resource definition information that
might be present. If there is no CICS resource definition information in the ejb-jar
file, the tool creates it using default values then stores it in the ejb-jar file for use in
subsequent deployment sessions. The Web application uses RMI to pass all of this
information, along with the HFS name, to the CICS component of the development
deployment tool; the DeployEJBJarBean session bean. The ejb-jar file is transferred
to HFS storage on z/OS using FTP.

DJAR naming is handled by the CICS application, DFHADJAR, which is called
using the JCICS API. The CICS applications DFHADSTR and DFHADINS carry out
resource definition and REQUESTMODEL naming using the EXEC CICS CREATE
API. The results of these CREATE commands are returned to DeployEJBJarBean
and then passed back to the Web application where they are displayed for the
application developer on the Web user interface. DeployEJBJarBean also stores a
copy of the successful CICS resource definitions in the copy of the ejb-jar file on
z/OS.

This deployment process is summarized in Figure 24 on page 121.

120 CICS Transaction Server: Release Guide

Using the CICS development deployment tool
Operation of the CICS development deployment tool is straightforward. Starting the
tool is simply a matter of invoking the Web application from your application
development workstation. To do this start your Web browser and enter the URL of
the Web application to open the tool’s User Login page, which prompts you for your
MVS user ID and password. The URL of this page can also include the name of the
ejb-jar file to be deployed.

The next page is the JAR selection page. Choose whether you want to deploy or
undeploy an ejb-jar file, then select the CorbaServer from a list those specified in
the DCF file. Lastly, enter the path to the ejb-jar file if it was not supplied on the
Web application’s URL.

The final page summarizes the result of the deployment operation. The button on
the page acts as a toggle, allowing the you to turn on or off the information relating
to any CICS resource definitions created

The CICS production deployment tool for EJB technology
The CICS production deployment tool is the tool for system administrators to
perform the tasks required to deploy Enterprise JavaBeans in an ejb-jar file into
CICS regions.

The CICS production deployment tool requires as input an ejb-jar file that has an
EJB 1.1 deployment descriptor.

Web browser interface

Windows NT serverClient workstation Z/OS

WebSphere Application

Server

CICS

CICS EJB server

CICS in-core definitions

Deployed
JAR file
(HFS)

Web application

Deployment
configuration

file

RMI
HTTP

CICSDDTbean

HTTP

EXEC CICS CREATE

EJB 1.1 JAR
file

FTP

JNDI
namespace

DFHAD*
applications

Figure 24. Deploying an EJB 1.1 JAR file from a workstation using the CICS development deployment tool.

Chapter 8. Deploying enterprise beans 121

When you want to deploy ejb-jar files as part of your testing, you will probably use
the CICS development deployment tool.

The CICS production deployment tool can work with a local ejb-jar file (one stored
on the workstation where the CICS production deployment tool is executing), or it
can establish a connection with HFS on the OS/390 host system. The HFS data
can be accessed via FTP, or as a Network drive. It is only possible to work with
local and HFS files at the same time and thus move or copy files between the two
storage locations when HFS is accessed as a Network drive.

The CICS production deployment tool makes the required changes to the ejb-jar file
and is able to produce as output:

v A deployed ejb-jar file, containing all the modifications required before it may be
used. If stored in HFS this ejb-jar file is ready to be used.

v A DFHCSDUP input stream to define in the host system CSD the CICS resource
definitions relevant to the Enterprise JavaBeans in this ejb-jar file.

v A BATCHREP input stream which may be used in a CICSPlex SM environment
to fulfill an equivalent function to the DFHCSDUP input stream.

Each use of the CICS production deployment tool can generate either a
DFHCSDUP input stream, or a BATCHREP input stream, or both, as the user
chooses.

Note: It is possible to define the required resources to CICS without the use of the
CICS production deployment tool, but you are recommended to make use of
the tool’s ability to generate appropriate resource definition commands.

The CICS production deployment tool is provided in two forms:

v As a graphical user interface (GUI) enabled as a Java and XML application.

v As an off-line utility enabled as an MVS UNIX System Services command.

Information about installing and using the CICS production deployment tool is
available in the following places:
Installation of CICS production deployment tool GUI

see Java Applications in CICS
Using the CICS production deployment tool GUI

see Java Applications in CICS
Using the CICS production deployment tool offline utility

see Java Applications in CICS

.

The final stages of deployment
If you use the CICS development deployment tool for EJB technology, there is
nothing left to do—the development deployment tool has done it all. However, if you
use the CICS production deployment tool for EJB technology, the following tasks
remain to be completed.

Applying generated resource definitions
The resource definition statements that were generated by the CICS production
deployment tool, either as a DFHCSDUP input stream, or as a BATCHREP input
stream, (or both, if you so specified), and which were stored in HFS, now have to
be applied to the systems for which they are intended. You do this using
DFHCSDUP or BATCHREP. Sample JCL for each is available in Java Applications
in CICS

122 CICS Transaction Server: Release Guide

Publishing names to the JNDI
Finally the names of the DJARs and the CORBASERVERs involved must be
published to the JNDI.For details of this, see Java Applications in CICS

Ensuring that the JAR file is stored in HFS
If you did not use the CICS production deployment tool to store its output ejb-jar file
in the HFS of the MVS image in which the required CICS region is run, you must
now make sure that it is stored there, either by reuse of the CICS production
deployment tool, or otherwise. Remember that the CICS production deployment tool
can only work with local and HFS files at the same time and thus move or copy
files between the two storage locations when HFS is accessed as a Network drive.

The ejb-jar file is then deployed to the CICS system, and is available to be used.

Problem determination

Error handling for the development deployment tool
Problems in the CICS development deployment tool are handled as follows:

v When the tool detects an error, it generates an exception. This causes the Web
application to issue a message, which includes any associated variables.

v Error conditions and error objects are traced to CICS if the error occurs in an
enterprise bean.

v If the error is in the Web application, trace is sent to a file determined in the
DCF and messages are sent to the WebSphere console.

Any problems in the CICS components of the development deployment tool, cause
an error to be returned to the caller indicating the failing instructions and the
associated RESP and RESP2 values. These values are displayed, or translated to
a more meaningful message where the error could be expected (such as the
DFHADJM file not being available, or there being no available DJAR names
remaining).

All error conditions are traced along with any available data in order to aid
debugging.

Messages
The following new CICS messages help determine the cause of failures in
enterprise bean deployment:

v DFHAD0200 to DFHAD0402

Messages intended for the application developer are displayed by the deployment
tools within each tool’s user interface.

Messages intended for the system programmer are output either to the WebSphere
Application Server console or to CICS, depending on the issuing program, and the
location of the event that caused the message to be issued. CICS messages are
sent to the CICS console and to a new transient data queue CADO.

Trace
Additional trace points are provided before and after the following external exit
points (Java plugins):

v In the EJB container

v In the ORB

v In the JCICS wrapper.

Chapter 8. Deploying enterprise beans 123

The CICS development deployment tool Web application running on WebSphere
Application Server outputs trace data to a collection of files identified in the DCF.
This trace output is controlled by a flag in the deployment configuration file. This is
not CICS system trace and this trace information is not passed to CICS.

CICS security considerations
Only users of the CICS development deployment tool require direct access to CICS.
Security for this tool is handled as follows.

All deployment operations relating to the CICS test region use a single
predetermined user ID. This is achieved using a sample URM that can be defined
on the TCPIP service definition related to the enterprise bean’s specified
CORBASERVER. If the URM is not included on the TCPIP service definition, the
CICS default user ID is used.

If CICS security is active, the user ID requires access to the resources used by the
development deployment tool and also authority to create, discard and inquire on
the necessary CICS RDO objects.

A further level of security is provided by the development deployment Web
application. Application developers using this tool are required to have an entry in
the DCF matching an MVS user ID. This entry specifies the CorbaServers that can
be used for deployment. An MVS password are also used for validation.

The system administrator can control whether or not a particular connection should
use SSL certificates. Use of SSL certificates is recommended in order to prevent
user ID and password information being sent over an insecure connection.

Installation and setup
The steps involved in setting up the application development infrastructure that will
allow you to develop and deploy enterprise beans to the CICS EJB server are as
follows:

1. Make sure the prerequisite hardware and software are in place. See Java
Applications in CICS for guidance on this.

2. Install the tools on their target workstations. You do not have to install the tools
in any particular order.

3. Configure the tools according to the detailed setup instructions. See Java
Applications in CICS for detailed guidance.

The CICS JAR development tool incorporating the CICS code generation utility, and
the CICS production deployment tool need to be set up on your application
development workstation. The CICS development deployment tool needs to be
installed on a workstation running the WebSphere Application Server, which may or
may not be on the same machine as the other tools.

The workstation and WebSphere components of the deployment tools are supplied
on a CD as a set of InstallShield packages.

To install one or more of the deployment tools, run the Setup program from the CD
on the target workstation. This starts the InstallShield Wizard, which leads you
through the rest of the installation process.

124 CICS Transaction Server: Release Guide

Select Complete to install all three deployment tools, or Custom to control which
tools and features to install. Follow the on-screen prompts to install the selected
tools. The Wizard also creates a CICS IBM group in your workstation’s Start menu
from which you can start the CICS JAR development tool or the CICS production
deployment tool. (The CICS development deployment tool is run from a Web
browser.)

You can download any service updates to the CICS EJB deployment tools from the
following IBM Web site:
http://www.software.ibm.com/software/ts/cics/support/

Setting up the development deployment Web application
Several tasks are involved in setting up the Windows NT server: The major one is
installing, configuring and testing the WebSphere Application Server. You then need
to install the WebSphere component of the CICS development deployment tool and
configure the deployment configuration file.

The Web application is configured using the wizards available within the
WebSphere Application Server console You can also control the start up and shut
down of the Web application from the console

Controlling deployment using the deployment configuration file
The deployment configuration file (DCF) provides the CICS system programmer
with the means to control the development deployment process. It is an XML file
located in the DCF directory on the WebSphere Application Server platform. Its
location is specified as an init parameter (configDefLoc) to the Web application. The
DCF is designed to be edited in a standard text or XML editor. After editing the
DCF, you must restart the CICS development deployment tool for any changes to
take effect.

Figure 25 on page 126 contains an example of a deployment configuration file. It
contains sample data showing support for 4 users, 10 CICS CorbaServers (2 of
which point to the same server but have different transaction IDs associated with
them), and 2 logical name bindings. Three of the four users have a CorbaServer,
which is intended for his or her exclusive use. Preventing users from sharing
CorbaServers is generally good practice. It makes beans more easily identifiable
and avoids the need to administer a naming convention for beans.

Chapter 8. Deploying enterprise beans 125

The DCF structure must match that specified in the document type definition (DTD)
named DCF.DTD. This DTD defines the XML tags that must be used in the DCF,
and the order in which they appear. If these rules are violated, parsing and
validation fails and the deployment tool cannot start.

The DCF.DTD should reside in the same directory on the WebSphere Application
Server platform as the DCF file itself. It should not be changed in any way as this
would cause DCF validation to fail.

Setting up the CICS components of the development deployment tool
To set up the CICS unit test environment used to run enterprise beans you should
configure a CICS EJB server, then set up the CorbaServers and transaction IDs as
specified in the deployment configuration file.

CICS definitions for the tool are in 3 groups:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeploymentConfig SYSTEM "DCF.DTD">
<DeploymentConfig>

<ConfigDefaults MaxJARSize="1000" LocalJARBase="E:/DJARS" AdminContact="John Brown, extension 123455"
MasterTrace="ALL" TraceLogPath="C:/temp/logfile.log" MaxActionWaitPeriod="600"/>
<OS390Server DeployJarBase="/usr/deployedJARs" ServerName="winmvs2c.hursley.ibm.com"

UserIDIgnoreCase="true" FTPPort="21" NamingServiceURL="iiop://pushmepullyou.hursley.ibm.com:900/"
JNDIPrefix="DFHD"/>

<CorbaServers>
<CorbaServer CICSName="CON1" FriendlyName="CorbaServer 1" TransID="TRN1"/>
<CorbaServer CICSName="CON1" FriendlyName="CorbaServer 2" TransID="TRN2"/>
<CorbaServer CICSName="CON3" FriendlyName="CorbaServer 3" TransID="TRN3"/>
<CorbaServer CICSName="CON4" FriendlyName="CorbaServer 4" TransID="TRN4"/>
<CorbaServer CICSName="CON5" FriendlyName="CorbaServer 5" TransID="TRN5"/>
<CorbaServer CICSName="CON6" FriendlyName="CorbaServer 6" TransID="TRN6"/>
<CorbaServer CICSName="CON7" FriendlyName="CorbaServer 7" TransID="TRN7"/>
<CorbaServer CICSName="CON8" FriendlyName="CorbaServer 8" TransID="CIRP"/>
<CorbaServer CICSName="CON9" FriendlyName="CorbaServer 9" TransID="CIRP"/>
<CorbaServer CICSName="TEST" FriendlyName="Test CorbaServer" TransID="TRNT"/>

</CorbaServers>
<Users>

<User Userid="DSMITH" Trace="OFF">
<CorbaServerRef Name="CON1"/>

</User>
<User Userid="MGREEN" Trace="1">

<CorbaServerRef Name="CON2"/>
</User>
<User Userid="SWHITE" Trace="1,2,3">

<CorbaServerRef Name="TEST"/>
</User>
<User Userid="JBROWN" Trace="1,3">

<CorbaServerRef Name="CON1"/>
<CorbaServerRef Name="CON3"/>
<CorbaServerRef Name="CON5"/>
<CorbaServerRef Name="CON7"/>
<CorbaServerRef Name="CON9"/>

<CorbaServerRef Name="TEST"/>
</User>

</Users>
<Bindings>

<ResourceMapping LogicalName="Resource1" Value="jdbc/Resource1"/>
<ResourceMapping LogicalName="Resource2" Value="jdbc/Resource2"/>

</Bindings>
</DeploymentConfig>

Figure 25. Deployment configuration file example

126 CICS Transaction Server: Release Guide

DFHADPD
This is the program definition group. It contains definitions to the required
CICS programs and transactions. See CICS Resource Definition Guide for
guidance on how to install program definitions.

DFHADFD
This is the file definition group. It contains the DFHADJM file. DFHADJM is
a file-control-managed VSAM key-sequenced data set (KSDS) used by the
tool to map CICS DJARs to the associated HFS JAR files. This group is
unlocked so you can redefine the DSNAME of the file. Alternatively, this can
be defined by a deployment descriptor card in the JCL in the same way as
other CICS data sets. DFHADJM should not be shared across regions. See
CICS Resource Definition Guide for guidance on how to install file
definitions.

DFHADBD
This is the bean definition group. It contains the bean runtime requirements.
It is not locked to allow you to redefine the definitions. It contains:

DFHADTCP
This is the TCP/IP service used to receive requests for the bean
component of the tool. You can alter the port number as required,
but it must match the port number of CorbaServer DFHD. See
CICS Resource Definition Guide for more guidance.

DFHD This is the CorbaServer used to hold the DJAR containing the bean
component. It is advisable to alter the host name of the MVS
system on which the CICS is running. Also, ensure that the port
number matches that defined in TCP/IP service DFHADTCP. You
can alter the JNDI prefix, but if you do this, it must match the JNDI
prefix stated in the JNDIPrefix element of the DCF. You can also
change the shelf. See CICS Resource Definition Guide for more
guidance.

DFHADJAR
This is the DJAR definition of the jar containing the bean
component. The HFS file defaults to match the default installation of
the UNIX System Services component of CICS. If the dfjadmvs.jar
file is not located in the default location, adjust the HFS file to
match. See CICS Resource Definition Guide for guidance on how
to install DJAR definitions.

DFHADRM
This is the request model definition for the CICSDDT bean. One
request model is used for all operations. You should not need to
alter this unless you alter the CorbaServer used to hold the DJAR
containing the bean component. See CICS Resource Definition
Guide for guidance on how to install request model definitions.

These groups are not included in the default CICS startup group list, DFHLIST, so
they are not automatically installed on start up. Be aware that as the definitions are
in a DFH group, any DFHCSDUP upgrades will overwrite any updated information
with the supplied defaults. To avoid this possibility copy DFHADBD and DFHADFD
to another group before you edit them. Once the definitions have been tailored, edit
your start up JCL to install this group list along with any existing lists. .

Once the tool has been installed, the bean needs to be published to the JNDI name
server. Before you do this make sure that you have specified the nameserver on
the NamingServiceURL field in the DCF. You need to publish the bean only once

Chapter 8. Deploying enterprise beans 127

during the lifetime of the JNDI using the command CECI PERFORM DJAR(DFHADJAR)
PUBLISH. This is not done automatically as part of the CICS start up procedure. See
CICS System Programming Reference for more guidance on using this command.

Setting up user IDs for the development deployment tool
All deployment operations relating to the CICS test region use a single
predetermined user ID. This is achieved using a user replaceable module (URM)
that can be defined on the TCP/IP service definition related to the enterprise bean’s
specified CorbaServer. See CICS Resource Definition Guide for more guidance. If
the URM is not included on the TCP/IP service definition, the CICS default user ID
is used.

If CICS security is active, the user ID requires resource level access to the
resources in DFHADPD, DFHADFD and DFHADBD, which are used by the
development deployment tool, and also command level access to create, discard
and inquire on the necessary CICS RDO objects.

A further level of security is provided by the development deployment Web
application. Application developers using this tool are required to have an entry in
the DCF matching an MVS user ID. This entry specifies the CorbaServers that can
be used for deployment.

The system administrator needs to do the following:

v Set up a RACF® group and add a GID (group ID) to give full access to UNIX
System Services.

v Set up the CICS user ID and add it to the RACF group so that the required HFS
directories can be created. See CICS Transaction Server for z/OS Installation
Guide for guidance on this.

v Set up MVS user IDs for all users who have access to the CICS region for the
purpose of deploying and running enterprise beans and add them to the RACF
group.

v Ensure that FTP services are available on MVS UNIX System Services. See the
OS/390 IBM CS IP User’s Guide, GC31–8514 for information on MVS FTP
services.

The system administrator can control whether or not a particular connection should
use SSL certificates. Use of SSL certificates is recommended in order to prevent
user ID and password information being sent over an insecure connection.

128 CICS Transaction Server: Release Guide

Chapter 9. CICSPlex SM management of enterprise beans

This chapter describes CICSPlex SM management of enterprise beans. It covers
the following topics:
v “Overview”
v “Changes to CICSPlex SM externals”
v “CICSPlex SM workload management of enterprise beans” on page 141

Overview
Enterprise beans can be managed by CICSPlex SM providing:

v Support for resource definition with:

– New BAS resource definition types for CorbaServers and CICS-deployed JAR
files.

– Modified definition types for programs, transactions, request models, and
TC/IP services.

v Support for CICS resources with:

– New resources for CorbaServers, CICS-deployed JAR files, and beans.

– Modified resources for programs, request models, TCP/IP services, and units
of work.

v Workload management of enterprise beans using both workload balancing and
workload separation techniques.

v Support for including the following EJB resources in real-time analysis:

– EJCOSE

– EJDJAR

v Changes to the EUI by the provision of:

– New menus and views to support the definition and operation of
CorbaServers, CICS-deployed JAR files, and beans.

– Modified views to support the changes to the definition and operation of
transactions, request models, TCP/IP services, and resource descriptions.

v Changes to the API by the provision of:

– New resource tables to support the definition and operation of CorbaServers,
CICS-deployed JAR files, and beans.

– Modified resource tables to support the changes to the definition and
operation of transactions, request models, and TCP/IP services.

v Changes to the Web User Interface by the provision of:

– Support for the operation of CorbaServers, CICS-deployed JAR files, and
beans, including new sample views in the supplied Starter Set.

– Support for the modified transactions, request models, TCP/IP services, and
resource descriptions, including modified sample views.

Note: There is no support for enterprise bean monitoring or statistics using
CICSPlex SM.

Changes to CICSPlex SM externals
The changes to CICSPlex SM externals for enterprise beans comprises:

© Copyright IBM Corp. 2001 129

#
#

#
#

v Two new CICSPlex SM Business Application Services (BAS) resource definition
types:

– CorbaServer resource definition using the new EJCODEF resource

– CICS-deployed JAR file resource definition using the EJDJDEF resource

To use these resources, see:

– For the EUI,“New BAS resource definition views”.

– For the API, “New BAS resource definition tables” on page 140.

v Modifications to the CICSPlex SM BAS resource definition types:

– Program definition (PROGDEF)

– Request model definition (RQMDEF)

– TCP/IP service definition (TCPDEF)

– Transaction definition (TRANDEF)

– Resource description definition (RESDESC)

To use these resources, see:

– For the EUI,“Modified BAS resource definition views” on page 132.

– For the API, “Modified BAS resource definition tables” on page 141.

v Four new CICSPlex SM operations resource types:

– CorbaServer resources using the EJCOSE resource

– CICS-deployed JAR file resources using the EJDJAR resource

– Enterprise bean resources using the EJCOBEAN and EJDJBEAN resources

To use these resources, see:

– For the EUI, “New operations views” on page 135.

– For the Web User Interface, “Web User Interface changes” on page 140.

– For the API, “New operations resource tables” on page 141.

v Five modified CICSPlex SM operations resource types:

– Program resources (PROGRAM)

– Request model resources (RQMODEL)

– TCP/IP services resources (TCPIPS)

– Unit of work resources (UOW)

– Unit of work link resources (UOWLINK)

To use these resources, see:

– For the EUI,“Modified operations views” on page 136.

– For the Web User Interface, “Web User Interface changes” on page 140.

– For the API, “Modified operations resource tables” on page 141.

EUI changes
The EUI changes are covered in two sections::

v “New BAS resource definition views”

v “Modified BAS resource definition views” on page 132

New BAS resource definition views
The two new BAS resources are:

EJCODEF (CorbaServer definition)
EJCODEF definitions describe the physical and operational characteristics
of CorbaServers. To display information about existing CorbaServer
definitions, either issue the command:

130 CICS Transaction Server: Release Guide

#

#

EJCODEF [resdef]

or select EJCODEF from the ADMRES menu.

Figure 26 shows the format of the panel produced when you use the create
primary (CREate) or line (CRE) action command from the EJCODEF view.

After installation of a EJCODEF resource definition, you can enquire about
the resultant object using:

v The CICSPlex SM EJCOSE command.

v The CICS CEMT INQUIRE CORBASERVER command

v The EXEC CICS INQUIRE CORBASERVER command.

For descriptions of the CorbaServer resource definition attributes, see the
CICSPlex System Manager Managing Business Applications.

EJDJDEF (CICS-deployed JAR file definition)
EJDJDEF definitions describe the physical and operational characteristics of
CICS-deployed JAR files. To display information about existing CorbaServer
definitions, either issue the command:
EJDJDEF [resdef]

or select EJDJDEF from the ADMRES menu.

COMMAND ===>
Name ===> COR1 Version ===> 0
Description ===> CorbaServer 1
RESGROUP ===>
User Data ===>

JNDIPrefix ===>
===>
===>
===>
===>

Sessbeantime ===> 000010 000000-992359 (DDHHMM)
Shelf ===> /cts/cicsts

===>
===>
===>

SERVER ORB ATTRIBUTES
Host ===>

===>
===>
===>
===>

Port ===> 00683 1-65535
SSL ===> NO YES | NO | CLIENTCERT
SSLPort ===> NO | 1-65535

CLIENT ORB CERTIFICATES
Certificate ===>

Press ENTER to create EJCODEF.
Type END or CANCEL to cancel without creating.

Figure 26. Creating a CorbaServer definition

Chapter 9. CICSPlex SM management of enterprise beans 131

Figure 27 shows the format of the panel produced when you use the create
primary (CREate) or line (CRE) action command from the EJDJDEF view

After installation of a EJDJDEF resource definition, you can enquire about
the resultant object using:

v The CICSPlex SM EJDJAR command.

v The CICS CEMT INQUIRE DJAR command.

v The EXEC CICS INQUIRE DJAR command.

For descriptions of the CICS-deployed JAR file resource definition
attributes, see the CICSPlex System Manager Managing Business
Applications.

Modified BAS resource definition views
The BAS views modified to support enterprise beans are:

PROGDEF (program definition)
The PROGDEF panel has a new attribute: JVM Profile.

COMMAND ===>
Name ===> DJAR1 Version ===> 0
Description ===> Deployed JAR file 1
RESGROUP ===>
User Data ===>

CORBA Server ===>COR1 Associated CORBA Server name

HFS Path Name of Jar File
HFSFile ===>

===>
===>
===>
===>

Press ENTER to create EJDJDEF.
Type END or CANCEL to cancel without creating.

Figure 27. Creating a CICS-deployed JAR file definition

132 CICS Transaction Server: Release Guide

#
#

RQMDEF (request model definition)
The modified RQMDEF panel is:

COMMAND ===>
Name ===> EYUPRG01 Version ===> 1
Description ===> Weekly Payroll Run - Local
RESGROUP ===>
User Data ===>

Language ===> N/A (ASSEMBLER, C, COBOL, LE370, PLI, RPG, N/A)
Reload ===> NO New copy of program loaded (NO, YES)
Resident ===> NO Residence status (NO, YES)
Usage ===> NORMAL Storage release (NORMAL, TRANSIENT)
UseLPAcopy ===> NO Program used from LPA/SVA (NO, YES)
Status ===> ENABLED Program status (ENABLED, DISABLED)
Cedf ===> NO CEDF available (YES, NO)
Datalocation ===> BELOW Data location (BELOW, ANY)
Execkey ===> USER Program key (USER, CICS)
Executionset ===> FULLAPI Program run mode (FULLAPI, DPLSUBSET)
Remotesystem ===> Connection name to remote CICS system
Remotename ===> Program name in remote CICS region
Transid ===> Tranid for remote CICS to attach
Rsl ===> PUBLIC Resource security value (0-24,PUBLIC,blank)
Dynamic ===> NO Dynamic routing (NO, YES)
Concurrency ===> QUASIRENT Concurrency (N/A, QUASIRENT, THREADSAFE)
JVM ===> N/A Java Virtual Machine (NO, YES, DEBUG)
JVMClass Java Virtual Machine Class

===>
===>
===>
===>
===>

Hotpool ===> NO Hot pooling (NO, YES)
JVM Profile ===> JVM profile name
Press ENTER to create PROGDEF.
Type END or CANCEL to cancel without creating.

Figure 28. The PROGDEF panel

Chapter 9. CICSPlex SM management of enterprise beans 133

For descriptions of the request model resource definition attributes, see the
CICSPlex System Manager Managing Business Applications.

TCPDEF (TCP/IP services definition)
There are four new attributes: Protocol, Authenticate, DNSGroup, and
GRPCritical. The changed panel is shown in Figure 30 on page 135.

--------------------- Create Request Model Definition for EYUPLX01 ----------------
COMMAND ===>
Name ===> Version ===> 1
Description ===>
RESGROUP ===>
User Data ===>

Transid ===>

CICS TS 2.1 SPECIFIC ATTRIBUTES

CorbaServer ===> COR1
Type ===> GENERIC CORBA | EJB |GENERIC

Corba Parameters
Module ===> *

===>
===>
===>
===>

Interface ===> *
===>
===>
===>
===>

EJB Parameters
Beanname ===>*

===>
===>
===>
===>

Intfacetype ===> NOTAPPLIC BOTH | HOME | REMOTE | NOTAPPLIC

COMMON PARAMETERS
Operation ===> *

===>
===>
===>
===>

CICS TS 1.3 ATTRIBUTES

OMGModule ===> IIOP Module Name
OMGInterface ===> IIOP Interface Name
OMGOperation ===> IIOP Operation Name

Press ENTER to create RQMDEF.
Type END or CANCEL to cancel without creating.

Figure 29. The RQMDEF panel

134 CICS Transaction Server: Release Guide

For descriptions of the TCP/IP service resource definition attributes, see the
CICSPlex System Manager Managing Business Applications.

TRANDEF (transaction definition)
The OTSTimeout attribute is added to the fourth detail panel of the
TRANDEF resource definition:

For descriptions of the transaction resource definition attributes, see the
CICSPlex System Manager Managing Business Applications.

New operations views
The new operations views to support enterprise beans are:

EJCOBEAN
A general view of beans within a CorbaServer.

COMMAND ===>
Name ===> TCPSRV1 Version ===> 1 Entry version Number
Description ===> Test TCPIP service 1
RESGROUP ===>
User Data ===>

Urm ===> Name of user replaceable module
Portnumber ===> 00000 Port number for this service (1 - 32767)
Certificate ===> HFS pathname of certificate

Status ===> OPEN Initial status of service (OPEN, CLOSED)
SSL ===> NO Use of SSL (NO, YES, CLIENTAUTH)
Transaction ===> Transaction Id to process this service
Backlog ===> 00000 Requests queued before rejection (0 - 32767)
TSQprefix ===> Prefix for temporary storage queue
IPaddress ===> IP address
SocketClose ===> NO Socket close (NO, 0-240000)
Authenticate ===> NO Authentication (NO | BASIC | CERTIFICATE | AUTOREGISTER)

| AUTOMATIC
Protocol ===> NOTAPPLIC Protocol (HTTP | IIOP | NOTAPPLIC)
DNSGroup ===> DNS group
GRPCritical ===> NO Critical member of DNS group (YES, NO)

Press ENTER to create TCPDEF.
Enter END or CANCEL to cancel without creating.

F1=HELP F2=hsplit F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 30. Creating a TCP/IP service definition

COMMAND ===>
Name ETVP Version ===> 1

BrExit ===> Name of bridge exit

Tclass ===> NO Task class (NO, 1-10, blank)
PrimedSize ===> 0 Primed storage allocation size (0-65520, blank)
Extsec ===> NO External Security Manager used (NO, YES, N/A)
Transec ===> 1 Transaction security value (1-64, blank)
Rsl ===> 0 Resource security value (0-24, PUBLIC, blank)
Routable ===> NO Routable (NO, YES)
OTSTimout ===> NO OTS Transaction timout (NO, 0-240000, hhmmss)

Figure 31. The TRANDEF fourth panel

Chapter 9. CICSPlex SM management of enterprise beans 135

EJCOBEAD
A detailed view of a bean within the specified CorbaServer.

EJCOBEAS
A summary view of beans within a CorbaServer.

EJCOSE
A general view of CorbaServers within a CICS system.

EJCOSED
A detailed view of a CorbaServer within a CICS system.

EJCOSE2
A detailed view of the JNDIPrefix and Shelf attributes of a CorbaServer
within a CICS system.

EJCOSE3
A detailed view of the Host and Certificate attributes of a CorbaServer
within a CICS system.

EJCOSES
A summary view of CorbaServers within a CICS system.

EJDJAR
A general view of CICS-deployed JAR files within a CorbaServer.

EJDJARD
A detailed view of a CICS-deployed JAR file within a CorbaServer.

EJDJARS
A summary view of CICS-deployed JAR files within a CorbaServer.

EJDJBEAN
A general view of beans within a CICS-deployed JAR file.

EJDJBEAD
A detailed view of a bean within the specified CICS-deployed JAR file.

EJDJBEAS
A summary view of beans within a CICS-deployed JAR file.

Modified operations views
The operations details views modified to support enterprise beans are:

PROGRAM
The PROGRAMD view has a new attribute: JVM Profile.

136 CICS Transaction Server: Release Guide

#
#

RQMODEL
The new attributes (Module, Interface, Operation, Beanname, Type,
Intfacetype, and CORBA server) are added to the RQMODELD view:

The Beanname and Operation fields hyperlink to the new RQMODEL2
view:

26FEB2001 20:28:00 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 =PROGRAM==PROGRAMD=EYUPLX01=EYUPLX01=26FEB2001==20:25:05=CPSM==========1

Program Name. DFHACP CICS System... EYUMAS1A Curr Use Cnt 1
Load Address. 043E5000 Exec Key...... CICSEXECKEY Tot Use Cnt. 1
Entry Point.. 843E5020 Execution Set. FULLAPI Use In Intvl 1
Length....... 7328 Mirror Tranid. AFF Newcopy Cnt. 0
Enable Status ENABLED Shared Status. PRIVATE Removed Cnt. 1
COBOL Type... NOTAPPLIC Current Loc... ECDSA RPL Number.. 0
Usage........ PROGRAM Held Status... NOHOLD Remote Name.
CEDF Option.. NOCEDF Fetch Time.... 00:00:00.00 Remote Sysid
Data Location ANY Avg Fetch Time 00:00:00.00 Copy Required NOTREQUIRED
Dynam Status.NOTDYNAMIC Concurrency... THREADSAFE Runtime...... JVM
JVM Class.... JVM Debug..... DEBUG
Hot Pooling..NOTHOTPOOL
JVM Profile.. DFHJVMPR

Figure 32. The PROGRAMD panel

25/12/2000 13:49:21 ---------------- INFORMATION DISPLAY--------------------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =RQMODEL==RQMODELD==EYUPLX01=EYUPLX01===25/12/1999=13:49:21====CPSM=====

Request Model.... IYZ30C06
CICS System...... IYZUDTA1

Transid.......... EJB1

OMG Module....... N/A
OMG Interface..... N/A
OMG Operation.... N/A

Module...........
Interface........
Operation........
Beanname.........

Type............. CORBA
Intfacetype...... NOTAPPLIC
CORBA Server..... COR1

Figure 33. The RQMODELD panel

Chapter 9. CICSPlex SM management of enterprise beans 137

The Module and Interface fields hyperlink to the new RQMODEL3 view:

UOWLINKD
The new attribute (Host), is added to the UOWLINKD view:

25/12/1999 13:49:21---------------- INFORMATION DISPLAY----------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =RQMODEL==RQMODEL2==EYUPLX01=EYUPLX01===25/12/1999=13:49:21====CPSM=====

Request Model IYZ30C06
CICS System...... DEW0A4A0

Beanname.........

Operation........

Mod.& Int....

Figure 34. The RQMODEL2 panel

25/12/1999 13:49:21---------------- INFORMATION DISPLAY----------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =RQMODEL==RQMODEL3==EYUPLX03=ALLMAS===25/12/1999=13:49:21====CPSM=====

Request Model IYZ30C06
CICS System...... DEW0A4A0

Module.......

Interface....

Bean & Operation.

Figure 35. The RQMODEL3 panel

138 CICS Transaction Server: Release Guide

The Host field hyperlinks to the new UOWLINK2 view:

UOWORKD
The new attribute (OTS Trans ID) is added to the UOWORKD view:

25/12/2000 13:49:21 ---------------- INFORMATION DISPLAY------------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =UOWLINK==UOWLINKD==DWPLEX05=ALLMAS===25/12/1999=13:49:21====CPSM======

Link ID...... F0F0F0F0
CICS System.. DEW0A4A0
UOW ID....... AB876A165D97E1810000000000000000
Net UOW ID... GBIBMIYZ.CVM3SM 165D97E10001 00AB
Link Type.... RMI
Link Name.... LINKNAME
Linked Sysid.
Protocol..... RRMS
RMI Qualifier RmfQual
Link Role.... COORDINATOR
Sync Status.. WARMSTART
Host.........

Figure 36. The UOWLINKD panel

25/12/1999 13:49:21-------------- INFORMATION DISPLAY---------------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>

W1 =UOWLINK==UOWLINK2==EYUPLx01=ALLMAS===25/12/1999=13:49:21====CPSM======

Link ID.... F0F0F0F0
CICS System DEW0A4A0

Host....... 123456789012345678901234567890123456789012345678901
123456789012345678901234567890123456789012345678901
123456789012345678901234567890123456789012345678901
123456789012345678901234567890123456789012345678901
123456789012345678901234567890123456789012345678901

Figure 37. The UOWLINK2 panel

COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =UOWORK==UOWORKD==EYUPLX01=ALLMAS===25/12/1999=13:49:21====CPSM==============

UOW ID.............. AB876A165D97E1810000000000000000
CICS System......... DEW0A4A0
Net UOW ID.......... GBIBMIYZ.CVM3SM 165D97E10001 00AB
Task ID............. 17
Start Term ID.......
Start Trans ID...... CSZI
Start User ID....... CVM
State............... INFLIGHT
Wait State.......... ACTIVE
Wait Cause.......... NOTAPPLIC
Age of Wait......... 00:03:20
Netname Causing Wait
Wait System ID......
OTS Trans ID........

Figure 38. The UOWORKD panel

Chapter 9. CICSPlex SM management of enterprise beans 139

#
#

The OTS Trans ID field hyperlinks to the new UOWORK2 detail view:

Web User Interface changes
The CICSPlex SM Web User Interface can be used to manage the new resource
tables and the new resource table attributes.

The Starter Set provided includes changed views and new views for the new
operations resource tables. These changes and additions are similar to those
provided by the EUI for new and changed resources.

CICSPlex SM API changes
The CICSPlex SM API has been enhanced by:

v New BAS resource definition tables for the new operation objects; see “New BAS
resource definition tables”.

v Modified BAS resource definition tables for the changed operation objects; see
“Modified BAS resource definition tables” on page 141.

v New operations resource tables; see “New operations resource tables” on
page 141.

v Modified operations resource tables; see “New operations resource tables” on
page 141.

New BAS resource definition tables
The CICSPlex SM API supports enterprise beans with resource tables for the new
objects:

EJCODEF resource table
A CICS definition that describes the physical and operational characteristics
of a CorbaServer.

EJCINGRP resource table
A BAS definition that describes the membership of a CorbaServer definition
(EJCODEF) in a resource group (RESGROUP).

EJDJDEF resource table
A CICS definition that describes the physical and operational characteristics
of a CICS-deployed JAR file.

EDJINGRP resource table
A BAS definition that describes the membership of a CICS-deployed JAR
file definition (EJDJDEF) in a resource group (RESGROUP).

25/12/1999 13:49:21-------------- INFORMATION DISPLAY-------------
COMMAND ===>
CURR WIN ===> 1 ALT WIN ===>
W1 =UOWORK==UOWORK2==EYUPLX01=ALLMAS===25/12/1999=13:49:21==CPSM===

UOW ID..... AB876A165D97E1810000000000000000
CICS System DEW0A4A0

OTS Trans ID 12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012

Figure 39. The UOWORK2 panel

140 CICS Transaction Server: Release Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
##

#
#
#

#
#

Modified BAS resource definition tables
The PROGDEF, TRANDEF, RQMDEF, and TCPDEF resource tables are enhanced
to include the new attributes.

The RESDESC resource table is enhanced to include attributes for the new
resource definition types:

CorbaServers EJCDEFRG CorbaServer definition
resource group

EJCDEFTS CorbaServer definition target
scope

EJCDEFRS CorbaServer definition
related scope

CICS-deployed JAR files EJDDEFRG CICS-deployed JAR file
definition resource group

EJDDEFTS CICS-deployed JAR file
definition target scope

EJDDEFRS CICS-deployed JAR file
definition related scope

New operations resource tables
EJCOBEAN resource table

A CICS resource that describes an enterprise bean object in a CorbaServer
being managed by CICSPlex SM.

EJCOSE
A CICS resource that describes a CorbaServer installed in an active CICS
system being managed by CICSPlex SM.

EJDJAR resource table
A CICS resource that describes a CICS-deployed JAR file in an active
CICS system being managed by CICSPlex SM.

EJDJBEAN resource table
A CICS resource that describes an enterprise bean object in a
CICS-deployed JAR file being managed by CICSPlex SM.

Modified operations resource tables
The PROGRAM, RQMODEL, TCPIPS, UOW and UOWLINK resource tables are
enhanced with the new attributes.

CICSPlex SM workload management of enterprise beans
This chapter describes CICSPlex SM workload management of enterprise beans. It
covers the following topics:
v “Introduction to workload management of enterprise beans” on page 142
v “Programming interfaces” on page 145
v “Workload balancing” on page 142
v “Workload separation” on page 143
v “Transaction affinities” on page 145

API

Chapter 9. CICSPlex SM management of enterprise beans 141

#
#

#
#

Introduction to workload management of enterprise beans
CICSPlex SM provides dynamic workload management of enterprise beans
executing in CICS-provided CorbaServers. CICS Transaction Server for z/OS,
Version 2 Release 1 extends the distributed routing program (DSRTPGM) routing
model.

For workload management of enterprise beans, the roles of the CICS regions are:

Requesting region
The region in which the routing request originates. For enterprise bean
invocations, this may be external client code, or another EJB logical server
that invokes an enterprise bean.

Routing region
The CICS region in which the decision is taken on where the transaction
identified in the request model should be run. The routing region must be
running CICS® Transaction Server for z/OS™, Version 2 Release 1.

Target region
The CICS region in which the transaction identified in the request model
runs. For enterprise bean invocations, this is typically an AOR. The target
region must be running CICS® Transaction Server for z/OS™, Version 2
Release 1.

In order to manage enterprise bean workloads, you need to create a logical EJB
server, which will typically consist of a number of cloned routing regions and cloned
target regions. (See “Logical servers — enterprise beans in a sysplex” on page 25
for details.) A CICSplex involved in the workload management of enterprise beans
may contain one or more logical EJB servers, and regions that are not involved with
processing enterprise bean invocations.

Each cloned target region may run a number of CorbaServers. A CorbaServer
provides the execution environment for enterprise beans and stateless CORBA
objects. See “The execution environment” on page 13 for more information.

CICS notifies the distributed routing program EYU9XLOP of all enterprise bean
routing requests. EYU9XLOP passes control to EYU9WRAM for:

v In the routing region:

– Notification

– Route selection

– Route selection error

– Route attempt complete

v In the target region:

– Transaction initiation

– Transaction termination

– Transaction abend

Workload management processing is unchanged.

Workload balancing
Workload balancing of enterprise beans can be achieved using the queue and goal
algorithms. The process is shown in Figure 40 on page 143. The inbound IIOP work
request is received by a routing region (listener) in system group EYUSGEJ1 and is
matched to an enterprise bean name, an operation and a CorbaServer using a

API

142 CICS Transaction Server: Release Guide

request model definition. The routing region routes the transaction identified in the
request model to a target region in the CICS system group. The transaction runs in
the CorbaServer corresponding to the installed request model instance..

The routing regions and targets regions must be connected via MRO.

Workload separation
Workload separation of enterprise beans is by transaction group or id. Figure 41 on
page 144 illustrates what such a workload might look like.

Data Repository

Name: EYUWSEJ1
Match: USERID
Target scope: EYUSGEJ2
Routing scope: EYUSGEJ1
Algorithm: QUEUE

Request model definition:

Workload specification:

Beanname: beanname
RQM name: EYURMEJ1
CORBAServer: EJC1
Type: CORBA
Transid: EJB1
Operation: *

CMAS

EYUCMEJ1

CICSplex / logical ejb server EYUPLXJ1

Cloned listeners
(Routing regions)

Cloned AORs
(Target regions)

EYUSGEJ1 EYUSGEJ2

EJC1

EJC2

IIOP inbound request

CTS 2.1

Figure 40. Sample workload balancing definition for dynamic routing of enterprise beans

API

Chapter 9. CICSPlex SM management of enterprise beans 143

An incoming IIOP enterprise bean request to CICS includes the enterprise bean
name, the operation, and (via the enterprise bean naming prefix) the CorbaServer.
This information is matched to a predefined request model definition that is installed
in the routing regions (cloned listener regions) and the target regions (cloned CICS
AORs). The request model identifies the CICS transaction to be run.

The routing program identifies the workload definition that names the transaction
group containing the transaction. After determining the appropriate set of target
regions, CICSPlex SM selects one based on the status of the active target regions

CMAS

EYUCMEJ1

CICSplex / logical ejb server EYUPLXJ1

Cloned listeners
(Routing regions)

Cloned AORs
(Target regions)

EYUSGEJ1 EYUSGEJ2

EJC1

EJC2

EJC1

EJC2

EJC1

EJC2

EJC1

EJC2

CTS 2.1

Beanname: beanname
RQM name: EYURMEJ1
CORBAServer: EJC1
Type: CORBA
Transid: EJB1
Operation: *

Request model definition:

Name: EYUWSEJ5
Match: USERID
Target scope: EYUMAS1E
Routing scope: EYUSGEJ1

Workload specification:

Name: EYUWDEJ1
Trangrp:
Target scope: EYUSGEJ2

EYUTGEJ1

Workload definition:

Data Repository

Workload group:

Name: EYUWGEJ1
Definition: EYUWDEJ1
Specification: EYUWSEJ5

IIOP inbound request

EYUMAS1E

Transaction group:

Name: EYUTGEJ1
Match: USERID
Tranid: EJB1, EJB2, EJB3

Figure 41. Sample workload separation definition for dynamic routing of enterprise beans

API

144 CICS Transaction Server: Release Guide

in that set. The CICS system name is returned to the routing region, which routes
the work request to the named target. The transaction is run in the CorbaServer
corresponding to the installed request model instance.

Transaction affinities
Transaction affinities have no meaning in the workload management of enterprise
beans. Transaction affinity relation and lifetime fields in the workload management
views should be left blank.

Programming interfaces
For workload management of enterprise beans, you must set, in all listener and
target regions, the DSRTPGM SIT parameter:
DSRTPGM=EYU9XLOP

You must also set routing support active in all listener and target regions, by using
the CPSM CICSSYS view to set ROUTING SUPPORT ACTIVE = YES for each
region.

Finally, as workload management of enterprise beans follows the Distributed
Routing model for workload management, you must ensure that all the regions
(both listener and target regions) are correctly associated with an appropriate
workload management specification.

The dynamic workload management for enterprise beans is identified by a new
routing type (DYRTYPE) in the EYURWCOM and EYURWTRA communication
areas. CICSPlex SM accepts and processes this new routing type. All the existing
workload management facilities provided by CICSPlex SM (workload balancing,
workload separation, and abend avoidance) are supported for this new routing type.
The EYURWCOM communication area has been enhanced by the introduction of a
new routing type:

WCOM_DYRTYPE
Specifies the type of routing request:

7 For routing of an IIOP request.

The EYURWTRA communication area has been enhanced by the introduction of a
new routing type:

WTRA_DYRTYPE
Specifies the request type:

7 The request type is an IIOP request.

CICSPlex SM provides a user replaceable module (URM) EYU9WRAM that allows
you to customize your routing logic. The control blocks passed by CICSPlex SM to
this URM contain the new information provided to CICSPlex SM by CICS.

API

Chapter 9. CICSPlex SM management of enterprise beans 145

API

146 CICS Transaction Server: Release Guide

Part 3. System management and Parallel Sysplex support

This Part describes all the new function included in CICS to provide enhancements
to CICS system management and Parallel Sysplex support. It covers the following
topics:

v “Chapter 10. CICS support for VTAM alias facility” on page 149

v “Chapter 11. Domain name system (DNS) connection optimization” on page 159

v “Chapter 12. Automatic restart of CICS data-sharing servers” on page 165

v “Chapter 13. Monitoring and statistics changes” on page 169

© Copyright IBM Corp. 2001 147

148 CICS Transaction Server: Release Guide

Chapter 10. CICS support for VTAM alias facility

This chapter describes CICS support for VTAM LU alias names. It covers the
following topics:
v “Overview”
v “Benefits” on page 153
v “Requirements” on page 153
v “Changes to CICS externals” on page 154

Overview
VTAM LU alias facilities provide improved connectivity and inter-operability for
terminal networks. Using LU aliases provides support for expanding SNA networks
and allows for greater integration of multiple enterprises. Adding support in CICS for
the VTAM alias facility enables CICS to use an LU alias for autoinstalled terminals
and work stations and thus ensure unique names in a CICSplex comprising
terminal-owning and application-owning regions (TORs and AORs).

CICS supports both forms of the VTAM alias function—predefined and
dynamic—only where shown in the following table:

Table 9. Devices for which CICS supports VTAM dynamic LU aliases

CICS-to-CICS APPC
connections (APPL

definitions)

APPC devices (LU definitions)

Terminals

Synclevel 1 Synclevel 2 Synclevel 1 Synclevel 2

Predefined alias only
Predefined

alias
Dynamic

alias
Predefined

alias
Dynamic

alias
Predefined

alias
Dynamic

alias

VTAM Yes Yes Yes Yes Yes Yes Yes Yes

CICS Yes No Yes Yes No No Yes Yes

The LU alias is used as the NETNAME for terminals and work stations that logon to
a CICS region. However, the network qualified name is supplied for problem
determination on the CEMT and EXEC CICS INQUIRE TERMINAL, INQUIRE
CONNECTION, and INQUIRE NETNAME commands, on a new option called
NQNAME. This is also added to the CEST command, and supplied on selected
messages and trace.

CICS does not support LU alias for synclevel 2 connections (LUTYPE 6.1 and 6.2)
and ignores any LU alias for these LU types, and continues to use the network
name defined in the VTAM APPL statement.

Dynamic LU alias support
CICS supports the use of a dynamic LU alias for CICS terminals and workstations
that are autoinstalled only. You enable dynamic LU alias support by specifying
LUAPFX on the VTAM APPL definition for any CICS terminal-owning region that
could receive duplicate netnames. Also, when starting VTAM, specify the following
options on the START command:

v NQNMODE=NQNAME

v CDRSCTI=n to specify the length of time that the session name should last after
the last session has logged off.

© Copyright IBM Corp. 2001 149

VTAM generates a dynamic LU alias only if LUAPFX is specified on the CICS APPL
statement and the resource comes from another network. That is, it has a different
network name from the network to which the CICS region belongs.

Predefined LU alias support
CICS supports the use of a predefined LU alias for CICS terminals and
workstations that are explicitly defined and those that are autoinstalled. You can
also use a predefined LU alias for CICS regions that communicate using CICS
intersystem communication (ISC). You enable predefined alias support by specifying
LUALIAS=alias on any cross-domain resource (CDRSC) that needs a specific alias.

Note: A terminal or APPC sync level 1 work station that is defined to CICS on an
explicit resource definition (that is, it is not autoinstalled) and is in a different
network, requires a CDRSC definition with a specific alias on the LUALIAS
parameter. This overrides the dynamic generation of an alias where LUAPFX
is specified on the CICS region’s APPL statement. To ensure that CICS can
match the VTAM LU alias with the installed terminal definition, the LUALIAS
value must match the NETNAME specified on the CICS TERMINAL resource
definition.

An LUALIAS option in the CDRSC is effective if the resource comes from another
VTAM domain (or network). That is, it is not used if the resource comes from the
same MVS image, but is used if the resource comes from another MVS image
regardless of whether it is from the same sysplex, another sysplex in the same
network, or from a different sysplex. If an LU alias is predefined, a dynamic LU alias
is not generated.

When to use VTAM LU aliases with CICS
Use VTAM dynamic or predefined LU aliases as described in the following topics.

Using dynamic LU alias
Use dynamic LU alias where:

v Your cross-network terminals and workstations that logon to CICS are mainly
autoinstalled.

The CICS region receives logons from terminals and synclevel 1 connections
(both parallel and single sessions) and those logons (or binds) are from
cross-network resources that might have duplicate network names.

However, be aware that synclevel 1 connections could become synclevel 2 in the
future. For example, if you have a connection between a TXSeries™ CICS and
CICS/ESA it will be synclevel 1, but if you change to using TXSeries CICS with a
PPC gateway, synclevel 2 will be used. CICS does not support dynamic LU
aliases for synclevel 2 APPC connections.

v An AOR receives shipped terminals or connections with duplicate network names
from different TORs.

Using predefined LU alias
Use predefined LU alias where:

v Dynamic LU alias is in operation in a CICS region and your terminals or
workstations are explicitly defined on CICS terminal resource definitions with
explicit terminal identifiers. In this case, you use predefined LU aliases to
override the generation of dynamic LU aliases, which CICS would fail to match
with any installed resource definition.

v Dynamic LU alias is not in operation in a CICS region, to avoid any conflict with
duplicate network names.

150 CICS Transaction Server: Release Guide

Cross-network devices that need predefined LU alias
If the following VTAM cross-network resources are to be connected to a CICS
region that is defined to VTAM with LUAPFX specified on its APPL statement, they
must each have a CDRSC LUALIAS=netname entry:

v CICS RDO-defined terminals connected from another network. These include
VTAM terminals that cannot be autoinstalled:

– Pipeline terminals

– Automatic teller machines (3614 and 3624)

– Devices for which CICS does not receive logons, such as printers.

v LUTYPE6.2 synclevel 1 connections that may be bound using limited resources.

Like other LUTYPE6.2 connections limited resource connections release their
dynamic LU alias when CDRSCTI expires after the last session is unbound.
However, these sessions are unbound whenever they are not in use, and if they
rebind after the dynamic LU alias is released, CICS would install another
connection, potentially with a different LU alias.

v CICS RDO-defined work stations (LUTYPE6.2 synclevel 1 connections)
connected from another network.

v Resources that require an LU name in a RACF profile definition, or resources for
which prior knowledge of the LU name is required.

Considerations when using VTAM LU aliases
When planning to use the VTAM LU alias facility, consider the following points:

CDRSCTI timeout values
Make the time specified on CDRSCTI long enough to cover any time interval
specified on CICS START commands that are issued against a terminal
resource that uses a dynamic LU alias.

This applies to STARTS with a delay that run on both a TOR or AOR. If the
CDRSCTI time is not long enough, a resource could log off and then log back
on again with a different network name and thus a different TERMID.

The CDRSCTI time interval should also be greater than that specified on the
CICS AILDELAY system initialization parameter.

However, if your applications have no dependency on the network name or
termid, you can disregard CDRSCTI or set it to 1.

Predictable termids
If you need autoinstalled terminal resources to have a predictable and
reproducible TERMID for such things as temporary storage queue names and
START requests, you may need to modify your autoinstall user-replaceable
module (URM) to select a reproducible TERMID from the network qualified
name (NQNAME) supplied in the CINIT or the BIND.

There is an example of such code (commented-out) in the sample autoinstall
URM, which extracts the network qualified name from the CINIT and BIND. The
example illustrates how to create a TERMID from the last non-blank character
of the NETID and the last 3 non-blank characters of the real network name
(NETNAME).

MVS workload management
If your MVS workload policies specify LU name classifications, remove the LU
name for any cross-network resources that are autoinstalled by CICS.

Recovery and persistent sessions support
Resources for which CICS uses any VTAM LU alias (predefined or dynamic)

Chapter 10. CICS support for VTAM alias facility 151

and which come from a different network are not cataloged by a CICS region
that is not using persistent session. This means the terminal sessions for the
resources cannot be recovered during an emergency restart.

Resources for which CICS uses any VTAM LUALIAS (predefined or dynamic)
and which come from a different network are catalogued if CICS is using
persistent sessions. This enables CICS to restore resource terminal session
information from the CICS catalog pending recovery of the session from VTAM.
However, if the resource does not persist, the resource is deleted during an
emergency restart.

This action is necessary because VTAM may have been restarted, which would
cause dynamic LU aliases to be reissued to different sessions. CICS is unable
to tell if VTAM has been restarted, and CICS cannot tell the difference between
a predefined and a dynamic LU alias.

CLSDST PASS
If you ISSUE PASS (CLSDST PASS) for a terminal that uses a dynamic LU
alias to pass control to another CICS region in another MVS image, the
resource will be known by a different network name in the receiving CICS. This
is true if the APPL statement of only one or both the CICS regions specify
LUAPFX to activate dynamic LU alias.

Generic resources
If a number of generic resource TORs are in two different MVS images, a
terminal or work station that logs on to one image is assigned a different
network name if it logs off and logs on to a TOR in another image.

TX Series resources
A TX Series resource can use APPC LUTYPE6.2 synclevel 1 or synclevel 2
depending on whether or not it uses a PPC Gateway

v If the PPC Gateway is not used, synclevel 1 communication is used and LU
aliases are used.

v If the PPC Gateway is used synclevel 2 communication is used and LU
aliases are not used.

FEPI
FEPI front end systems are not supported by VTAM LU alias.

Other factors to consider
Before you decide to enable dynamic LU aliasing, give some thought to the
consequences this might have, and review the timing values already in use to
ensure that your current operation can benefit without any undesirable side affects.
Your choice of what LU alias prefix to use for the CICS APPL definition, and the
choice of CDRSC time-out value, might be affected by the following considerations:

v For an LU that originates from a remote network, the alias name bears no
relation to the LU’s real name and it has a shorter lifetime such that you cannot
use it as a permanent reference to the LU. Weigh this factor against the
advantages by understanding what use is made currently of the netname by your
systems. If the name acquires meaning only while the LU is logged on to CICS,
an LU alias does not pose a problem. If the LU’s name is used in some way as a
reference to information after the LU has logged off (perhaps when it logs on
again later), take into account the logged-off period when determining the value
of CDRSCTI. The question to ask is this: if another LU logs on and is assigned
the same name (of an LU that logged off earlier), would that affect the integrity of
any data?

152 CICS Transaction Server: Release Guide

Check whether your applications use the EXEC CICS ASSIGN NETNAME
command, and for what purpose.

v The LU name might be used by support groups or help-desks in resolving
problems. The extent to which such groups can rely on using a
dynamically-allocated LU name while the LU is logged off is governed by the
CICS AILDELAY and AIRDELAY system initialization parameters.

Check whether CEMT INQUIRE NETNAME or CEMT INQUIRE TERMINAL
NETNAME commands are used for problem determination.

v Alias names created by VTAM are unique only within an MVS image. This means
that CICS regions in different images rely on different LUAPFX values to maintain
this uniqueness across a Parallel Sysplex, but CICS regions in the same image
can share the same LU alias prefix. A consequence of using different prefixes in
the same MVS image is that the same LU receives a different name when
logging on to two CICS regions when it could have been given the same name.
The same prefix in different images only becomes an issue if there is
intercommunication between CICS regions across the sysplex.

v The netname is one of the attributes of an LU that is shipped to an AOR by a
TOR. If the TOR in one MVS image routes transactions to an AOR in another
MVS image, you may need to maintain uniqueness of LU names throughout the
CICSplex.

v Consider whether damage could result from a clash of names. Although CICS
does not allow two LUs with the same netname to be logged on at the same time
in the same region, with dynamic LU aliases the netname can be reused for
different LUs. Hence the recommendation that the CDRSCTI value should be
greater than that specified on the CICS AILDELAY system initialization
parameter. This avoids the situation where a terminal control table entry (TCTTE)
created for an LU that has since logged off is reused for another LU because it
has been allocated the same LU alias name. Although historically netname has
been considered to be unique this is no longer the case. If an LU alias name
times out and is reused, any data associated with that netname (or termid) can
inadvertently be available to the new LU.

Benefits
Support for VTAM predefined and dynamic LU alias allows CICS regions that are
owned by different enterprises, and which may use the same VTAM network
names, to interconnect, overcoming the problems of duplicate network names that
have occurred in the past.

VTAM dynamic LU alias benefits the interconnection of enterprises for organizations
that offer bureau services. Incidents of conflict tend to grow when the number of
interconnected networks increases for any reason, which could be a consequence
of network restructure, mergers or acquisitions.

Another benefit of the dynamic LU alias facility is that it eliminates the need to
predefine cross domain resource definitions (CDRSCs) for CICS autoinstalled
devices.

Requirements
The hardware and software requirements for VTAM dynamic LU alias are the same
as for CICS TS generally.

Chapter 10. CICS support for VTAM alias facility 153

Changes to CICS externals
There are changes to a number of CICS external interfaces in support of the VTAM
LUALIAS function. These are:
v “Changes to system definition”
v “Changes to resource definition”
v “Changes to the application programming interface” on page 155
v “Changes to the system programming interface” on page 155
v “Changes to CICS-supplied transactions” on page 155
v “Changes to user-replaceable modules” on page 156
v “Changes to monitoring” on page 157
v “Changes to problem determination” on page 157

Changes to system definition
There are changes to the way you define the VTAM APPL definition for your CICS
regions to enable VTAM dynamic LU alias. If a CICS region might receive
autoinstall requests from another VTAM network, include the LUAPFX parameter in
the region’s VTAM APPL definition.

LUAPFX=string
specifies the prefix characters of the LUALIAS to be assigned when a
dynamically generated cross-network CDRSC (with NQNMODE=NQNAME) is
created for a session with CICS. VTAM concatenates the characters specified
with the next sequential number available to form a VTAM-generated LUALIAS
name for the cross-network dynamic CDRSC.

string
indicates the two characters to be used as the prefix for all dynamically
generated LUALIAS names for dynamic cross-network CDRSCs in session
with the CICS region defined by the APPL statement. Remember to take
into account the VTAM naming conventions when choosing this prefix.
CICS considerations when specifying the LU alias string are given in the
CICS Transaction Server for z/OS Installation Guide.

Note: VTAM deletes a dynamically-generated LU alias after a terminal session
is closed, or the last session of an APPC parallel sessions connection is
closed, and the CDRSCTI-specified timeout interval has expired. The
permitted range of timeout values is 1 second to 7 days, but generally
the default of 8 minutes is acceptable in most situations. The CDRSCTI
timer doesn’t start until there are no more sessions involving the
resource represented by a CDRSC.

Changes to resource definition
The description of the NETNAME parameter on the TERMINAL and CONNECTION
resource definitions is extended to cover VTAM LU alias support:

NETNAME
The following is added to the description of the NETNAME parameter of the
TERMINAL resource definition:

If the CICS region supports VTAM dynamic LU alias (that is, LUAPFX=xx is
specified on the CICS region’s APPL statement) and the terminal is in another
network, it must be defined to VTAM on a CDRSC definition with a predefined
LUALIAS (LUALIAS=netname) to override VTAM dynamic allocation. In this
case, netname on the VTAM LUALIAS parameter must match the NETNAME
defined on this terminal resource definition.

154 CICS Transaction Server: Release Guide

CONNECTION
The following is added to the description of the NETNAME parameter of the
CONNECTION resource definition:

APPC synclevel 1: If the CICS region supports VTAM dynamic LU alias (that
is, LUAPFX=xx is specified on the CICS region’s APPL statement) this
NETNAME is assumed to be in the same network as the CICS region. If it is
not the resource must have a local VTAM CDRSC definition with
LUALIAS=netname defined, where netname must match the NETNAME defined
on this CONNECTION definition. Synclevel 1 APPC connections are generally
work stations.

APPC synclevel 2 and LUTYPE6.1: This NETNAME is assumed to be unique.
CICS matches it against the network name defined in the VTAM APPL
statement. These connections are generally CICS-to-CICS but could, for
example, be TXSeries-connected through a PPC gateway.

Changes to the application programming interface
On an ASSIGN NETNAME command, the NETNAME returned by CICS could be an
LU alias, either dynamically allocated by VTAM or predefined on an LUALIAS
parameter on a CDRSC definition.

Changes to the system programming interface
There are changes to the following system programming commands:

v INQUIRE TERMINAL | NETNAME

v INQUIRE CONNECTION.

INQUIRE TERMINAL | NETNAME
The 17-character network qualified name, NQNAME, is added for any terminal
that received an NQNAME from VTAM at logon time.

Remote terminals do not have NQNAME.

INQUIRE CONNECTION
The network qualified name, NQNAME, is added for any connection that
received an NQNAME from VTAM at bind time.

The NQNAME option is supported for problem determination purposes only, and is
returned for autoinstalled and RDO-defined resources if it has been supplied by
VTAM. However, it is not catalogued for RDO-defined resources and is therefore
not available on a restart until that resource logs on again.

If the resource is non-VTAM or a remote terminal, NQNAME is blank. If the
resource is a VTAM resource but has not yet received an NQNAME, CICS returns
the known netname.

Changes to CICS-supplied transactions
NQNAME option is added to the CEMT INQUIRE TERMINAL, NETNAME, and
CONNECTION commands, returning the 17-character network qualified name. See
“Changes to the system programming interface” for information about this new
option.

CETR
If dynamic LU alias is in operation for the CICS region, and you want to use VTAM
exit tracing to trace the bind flows for an autoinstalled terminal, the NETNAME you
specify on the CETR Transaction and Terminal Trace panel should be the real
network name. However, if you want to trace once the LU alias is known, specify

Chapter 10. CICS support for VTAM alias facility 155

the LUALIAS name. If the real network name is used, and there is more than one
network using that name, the VTAM exit tracing is activated for each occurrence of
the network name.

Changes to user-replaceable modules
There are changes affecting the node error program (NEP) and the terminal
autoinstall program.

Node error program
A new action of print NQN is added to the action flags set by DFHZNAC. Print NQN
causes the network qualified name to be printed after any message that contains
this flag. The action flag is TWAOPT1, flag 7, set to X'02'. This can be set and
unset in the same way as print TCTTE. Print NQN is added as the default action
flag for all the following DFHZC messages:
0125 0131 0144 0145 0146 0147 0148 0149 0150 0155 0156 0157
2117
2400 2401 2403 2404 2407 2408 2409 2410 2411 2416 2417 2418
2419 2420 2421 2423 2424 2425 2435 2443 2444 2446 2448 2449
2452 2456 2457 2460 2462 2467 2468 2470 2471 2490
3405 3407 3409 3417 3418 3419 3420
3421 3422 3424 3429 3433 3434 3435 3444 3445 3446 3447 3453 3454 3455
3461 3462 3464 3465 3466 3468 3469 3470 3471 3474 3475 3476 3477 3479
3480 3481 3485 3486 3487 3488 3489 3490 3491 3495 4902 4903 4904 4905
4906 4907 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
4920 4922 4929 4924 4925 4926 4927 4928 4930 4931 4932 4934 4935
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4949
6591 6594 6595 6596

Note that DFHZC2411 is not related to a specific node. That is, the TCTTE has not
yet been created and the message is printed against a dummy TCTTE. The NEP is
not called in this case, therefore the default setting cannot be overridden, hence the
network qualified name is always printed for DFHZC2411 messages

When DFHZC2410 is issued against the dummy TCTTE, the network qualified
name is not printed.

Terminal autoinstall URM
Review your terminal autoinstall URMs, including the default DFHZATDX and
DFHZATDY modules, for each CICS region that is using dynamic LU alias (where
LUAPFX=xx is specified).

In particular, the termid produced by the autoinstall URM should be reviewed for the
following reasons:

v The default programs use the last 4 characters of the NETNAME, which will not
produce a repeatable TERMID for an LU that is assigned a dynamic LU alias.
Consider using the network qualified name in the CINIT or BIND if it is important
that the termid is repeatable.

v If you use the last 4 characters of the NETNAME, a dynamic LU alias will
produce a termid of 0001, 0002, and so on. Check that your RDO defined
terminals do not have such names, and if necessary change your URMs’ logic.
You could possibly use the last character of the NETID concatenated with the
last 3 from the real network name.

v There is some new sample code in DFHZATDX and DFHZATDY that extracts the
network qualified name from the CINIT or BIND and uses the last character of
the NETID and the last 3 characters of the real network name to provide an
alternative TERMID.

156 CICS Transaction Server: Release Guide

If this logic fails to create a termid for any reason it drops through to create the
termid from the network name as usual. Note this code is within comments and
is supplied only to illustrate how to extract the required information from the
CINIT and BIND '0E' control vectors

v The sample code (within comments) is also added to the C, COBOL, and PL/I
versions of DFHZATDX. If you use these, note that:

– The PL/I sample, DFHZPTDX, must be compiled with the PL/I compiler option
LANGLVL(SPROG).

– The COBOL sample, DFHZCTDX, must be compiled with compiler option
TRUNC(OPT).

Changes to monitoring
If you are using VTAM dynamic alias support in CICS, do not use LUNAME
classifications in your workload management (WLM) policies. Alternatively, do not
use dynamic LU alias support if you have to use a WLM policy that uses LUNAME
classifications.

The LUNAME (network name) passed to WLM is the NETNAME in use by CICS.
This might be an LU alias. Additionally, CICS monitoring records include the
network qualified name in the form of two 8-character fields containing NETID and
real NETNAME. These two fields are valid if the resource had received an
NQNAME during BIND or LOGON. If the resource has not logged on, or no
NQNAME has been received, NETID is blank and real NETNAME is the same as
NETNAME.

There are new monitoring data field changes for VTAM LU alias support:

Additional performance class data fields in DFHTERM
197 TYPE-C, 'NETID', 8 BYTES

NETID if a network qualified name has been received from VTAM. If it is a
VTAM resource and the network qualified name has not yet been received,
NETID is 8 blanks. In all other cases it is nulls.

198 TYPE-C, 'RLUNAME', 8 BYTES
Real network name if a network qualified name has been received from VTAM.
In all other cases this field will be the same as DFHTERM_111.

For non-VTAM resources it is nulls.

Changes to problem determination
There are changes to messages, dump, and trace to include the network-qualified
name.

Messages
A new message, DFHZC6907,is issued each time CICS autoinstalls a terminal or
connection. This message shows the netname by which CICS will know the device,
and the network-qualified name (netid.realnet) to show the origin of the resource.

The DFHZNAC message texts are not changed by CICS, but the network-qualified
name can be added to the end of the message by your node error program (see
“Node error program” on page 156).

Dump
NQNAME is included as part of the TCTTE and TCTSE in the TCP section of CICS
dumps.

Chapter 10. CICS support for VTAM alias facility 157

Trace
The following changes are made to CICS trace entries:

v NQNAME is included in trace point AP FC8A (by module DFHZATA)

v A new trace point, AP FCEE, is created to help you find the VTAM origin of the
resource. This trace point contains:
Data 1 = NETNAME
Data 2 = NETID NETNAME

This new trace entry is created at logon when the OPNDST is issued.

158 CICS Transaction Server: Release Guide

Chapter 11. Domain name system (DNS) connection
optimization

This chapter describes enhancements to CICS support for connection optimization
using the domain name system (DNS). It covers the following topics:
v “Overview”
v “Benefits” on page 161
v “Requirements” on page 161
v “Changes to CICS externals” on page 161

Overview
Connection optimization is a technique that uses DNS to balance IP connections
and workload in a sysplex domain. In DNS terms, a sysplex is a subdomain that
you add to your DNS name space. Connection optimization extends the concept of
a DNS host name to clusters, or groups, of server applications or hosts. Server
applications within the same group are considered to provide equivalent service.
Connection optimization uses load-based ordering to determine which addresses to
return for a given cluster.

DNS provides hostname-to-IP address mapping through network server hosts called
domain name servers. This support extends the connection optimization introduced
in CICS TS 1.3.

DNS registration
Server applications register with the MVS Workload Manager (WLM), which
quantifies the availability of server resources within a sysplex. WLM must be
configured in goal mode on all hosts within the sysplex. TCP/IP stacks can also
register with WLM to provide information on the started IP addresses, or static
definitions can be used if stacks do not support registration. When registering,
server applications provide the following information:

Group name
This is the name of a cluster of equivalent server applications in a sysplex. It is
the name within the sysplex domain that client applications use to access the
server applications. CICS uses the DNSGROUP parameter of the
TCPIPSERVICE resource definition as the group name to register with WLM.

Server name
This is the name of the server application instance. The server name must be
unique among all servers that share the same group name. A server application
instance can belong to more than one group. CICS registers with WLM using
the specific APPLID of the region as specified by the APPLID system
initialization parameter.

Host name
This is the host name of the TCP/IP stack on which the server application runs.
During startup, CICS calls the TCP/IP function gethostbyaddr to determine the
host name of the machine on which it is running, and passes it WLM for
registration.

Name resolution example
The following diagram shows an example CICSplex consisting of 4 CICS regions,
each executing on separate OS/390 machines within a sysplex.

© Copyright IBM Corp. 2001 159

The systems are named MVS1A, MVS1B, MVS1C and MVS1D, with the CICS
regions having APPLIDs of CICSPROD1, CICSPROD2, CICSDEV1 and CICSDEV2

The sysplex is defined to the DNS to have the name PLEX1 and each MVS
machine has a single IP address. The above diagram describes the names that a
client machine could use to access the CICS regions based on the following
resource definitions installed on each CICS:

v The region CICSPROD1 running on machine MVS1A has 2 TCPIPSERVICE
definitions, one specifying a group_name of WWW and the second specifying a
group_name of IIOP1

v The region CICSPROD2 running on machine MVS1B has 1 TCPIPSERVICE
definition specifying a group_name of WWW

v The region CICSDEV1 running on machine MVS1C has 2 TCPIPSERVICE
definitions, one specifying a group_name of IIOP1 and the second specifying a
group_name of WWWDEV

v The region CICSDEV2 running on machine MVS1D has 1 TCPIPSERVICE
definition specifying a group_name of WWWDEV

The names that a client can access are:

v PLEX1.IBM.COM will return the IP address of any of the machines in the plex

v WWW.PLEX1.IBM.COM will return either the address of MVS1A or MVS1B

v IIOP1.PLEX1.IBM.COM will return either the address of MVS1A or MVS1C

v WWWDEV.PLEX1.IBM.COM will return either the address of MVS1C or MVS1D

You can also address individual CICS regions within a group by using their
APPLIDs (or server names). For example, CICSPROD1.WWW.PLEX1.IBM.COM
will return the address of MVS1A. This is equivalent to MVS1A.PLEX1.IBM.COM,
but the client does not have to know the machine on which the CICSPROD1 server
is running, only that CICSPROD1 is part of the WWW group.

Since these names dynamically become available as CICS regions register with the
WLM, adding more CICS regions and more MVS machines does not result in any
more administration. Using the generic host names (such as
WWWDEV.PLEX1.IBM.COM) decouples client applications from specific CICS
regions and MVS hosts which enhances availability and scalability

MVS1D

CICSDEV2

GR:WWWDEV

MVS1C

CICSDEV1

GR:IIOP1
GR:WWWDEV

MVS1A

CICSPROD1

GR:WWW
GR:IIOP1

GR:WWW

MVS1B

CICSPROD2

PLEX1.IBM.COM

WWW.PLEX1.IBM.COM

IIOP1.PLEX1.IBM.COM

WWWDEV.PLEX1.IBM.COM

Figure 42. CICSPLEX using DNS connection optimization

160 CICS Transaction Server: Release Guide

Benefits
This enhancement to CICS DNS support improves the resource definition options
and operator interfaces that allow CICS TCP/IP services to register and deregister
with OS/390 work load manager (WLM)to take part in DNS connection optimization.

DNS connection optimization provides workload balancing for TCP/IP requests
outside CICS, which can complement CICS managed workload balancing within the
CICSplex.

Requirements
The hardware and software requirements for DNS are the same as for CICS TS
generally.

Changes to CICS externals
There are changes to a number of CICS external interfaces in support DNS
connection optimization. These are:
v “Changes to system definition”
v “Changes to resource definition” on page 162
v “Changes to the system programming interface” on page 162
v “Changes to CICS supplied transactions” on page 164
v “Changes to problem determination” on page 164

Changes to system definition
To exploit DNS connection optimization, you might need to reconfigure the DNS
server that CICS uses to resolve hostnames. In particular, CICS resolves its own
hostname at startup using a call to the gethostbyaddr function. CICS needs to
resolve its own hostname using the DNS server configured for connection
optimization in the sysplex. This may not be the system configured name server if
the sysplex is already configured for TCP/IP operation. The system name server
may not even be on OS/390 or on any of the systems in the sysplex.

You can change the resolver configuration for CICS either by altering system
TCP/IP configuration files or by adding or changing the DD statement SYSTCPD in
the CICS start-up JCL. This DD name refers to the resolver configuration data set
and in this data set is a reference to the DNS server’s IP address. If the DD name
is not included in the startup JCL, a number of system files are searched until one
is found.

The standard TCP/IP search order to locate the resolver configuration file is defined
as follows:

1. The MVS data set or HFS file that is identified in the RESOLVER_CONFIG
environment variable

2. The /etc/resolv.conf file that resides in HFS

3. The data set specified on the //SYSTCPD DD statement in the CICS startup
JCL.

4. jobname.TCPIP.DATA for batch jobs, or userid.TCPIP.DATA for TSO users or
Unix System Sevices shell users

5. The SYS1.TCPPARMS(TCPDATA) data set

6. The TCPIP.TCPIP.DATA data set.

Chapter 11. Domain name system (DNS) connection optimization 161

CICS sets the value of the RESOLVER_CONFIG environment variable to the data
set referenced by the SYSTCPD DD statement in the CICS JCL. This ensures that
the data set referenced by SYSTCPD effectively becomes first in the search order
and will take precedence to any existing /etc/resolv.conf file.

If the SYSTCPD DD statement is not defined in the startup JCL,
RESOLVER_CONFIG is not set, and the normal TCP/IP search order applies. See
the OS/390 IBM Communications Server: IP Configuration Guide for more
information about system TCP/IP configuration files.

Changes to resource definition
Two options, DNSGROUP and GRPCRITICAL, are added to the TCPIPSERVICE
definition:

DNSGROUP
specifies the location parameter passed on the IWMSRSRG register call to the
OS/390 Workload Manager. The value may be up to 18 characters, and any
trailing blanks are ignored. This parameter is referred to as group_name by the
TCP/IP DNS documentation and is the name of a cluster of equivalent server
applications in a sysplex. It is also the name within the sysplex domain that
clients use to access the CICS TCPIPSERVICE.

More than one TCPIPSERVICE is allowed to specify the same group name.
The register call is made to WLM when the first service with a group name
specified is opened. Subsequent services with the same group name do not
cause more register calls to be made. The deregister action is dictated by the
GRPCRITICAL attribute. It is also possible to explicitly deregister CICS from a
group by issuing a master terminal or SPI command.

GRPCRITICAL(NO|YES)
marks the service as a critical member of the DNS group, meaning that this
service closing or failing causes a deregister call to be made to WLM for this
group name. The default is NO, allowing two or more services in the same
group to fail independently and CICS still remains registered to the group. Only
when the last service in a group is closed is the deregister call made to WLM, if
it has not already been done so explicitly. Multiple services with the same group
name can have different GRPCRITICAL settings. The services specifying
GRPCRITICAL(NO) can be closed or fail without causing a deregister. If a
service with GRPCRITICAL(YES) is closed or fails, the group is deregistered
from WLM.

To implement DNS for IIOP requests (including Enterprise beans), the following
CORBASERVER options must be defined:

v The HOSTNAME option of the CORBASERVER definition must have a
HOSTNAME defining the corresponding generic host name. This generic
hostname is the DNSGROUP value from the TCPIPSERVICE definition, suffixed
by the domain or subdomain name managed by the nameserver on MVS. This
domain name is established by the TCP/IP administrator.

v The CORBASERVER (or any DJARs within it) must be published to the
nameserver (The COS Naming Server) with the generic hostname.

Changes to the system programming interface
Three options are added to the EXEC CICS INQUIRE TCPIPSERVICE command:

162 CICS Transaction Server: Release Guide

DNSGROUP(data-area)
returns the 18–character DNS group name that this TCPIPSERVICE registers
with WLM.

DNSSTATUS(cvda)
returns the current state of WLM/DNS registration of this TCPIPSERVICE. The
CVDA values are:

NOTAPPLIC
This service is not using DNS connection optimization. No DNSGROUP
attribute was specified when the resource was installed.

UNAVAILABLE
Registration is not supported by OS/390.

UNREGISTERED
Registration has not yet occurred (this is the initial state of any service).

REGISTERED
Registration has completed successfully.

REGERROR
Registration has failed with an error.

DEREGISTERED
Deregistration has completed successfully.

DEREGERROR
Deregistration has failed with an error.

GRPCRITICAL(cvda)
returns a CVDA value specifying whether or not this TCPIPSERVICE is a
critical member of the DNS group. The CVDA values are:

CRITICAL
If this TCPIPSERVICE is closed, or abnormally stops listening for any
reason, the group name specified in the DNSGROUP attribute is
deregistered from WLM.

NONCRITICAL
If this TCPIPSERVICE is closed, or abnormally stops listening for any
reason, the group name specified in the DNSGROUP attribute is not
deregistered from WLM, unless this is the last service in a set with the
same group name.

One option is added to the EXEC CICS SET TCPIPSERVICE command:

DNSSTATUS
changes the DNS/WLM registration status of this service. This can be done
independently of changing the open or closed status of the service.

To account for timing delays in the deregister request reaching the WLM and
the DNS updating its tables, it is advisable to deregister a service before setting
it closed. This ensures that client applications do not encounter ″Connection
Refused″ situations during the time between the deregister call being issued
and the DNS server actually updating its tables. The valid CVDA values are:

DEREGISTER
causes CICS to deregister the group name specified by the
DNSGROUP attribute of this TCPIPSERVICE. The WLM macro
IWMSRDRS is called and CICS will no longer be a part of the DNS

Chapter 11. Domain name system (DNS) connection optimization 163

connection optimization. Any other TCPIPSERVICES that are in the
same group (that is, share the same DNSGROUP attribute) are also
deregistered.

Changes to CICS supplied transactions
Three options are added to the CEMT INQUIRE TCPIPSERVICE command:

DNSGROUP(data-area)
returns the 18–character DNS group name that this TCPIPSERVICE registers
with WLM.

DNSSTATUS(cvda)
returns the current state of WLM/DNS registration of this TCPIPSERVICE. The
CVDA values are:

NOTAPPLIC
This service is not using DNS connection optimization. No DNSGROUP
attribute was specified when the resource was installed.

UNAVAILABLE
Registration is not supported by OS/390.

UNREGISTERED
Registration has not yet occurred (this is the initial state of any service).

REGISTERED
Registration has completed successfully.

REGERROR
Registration has failed with an error.

DEREGISTERED
Deregistration has completed successfully.

DEREGERROR
Deregistration has failed with an error.

GRPCRITICAL(cvda)
returns a CVDA value specifying whether or not this TCPIPSERVICE is a
critical member of the DNS group. The CVDA values are:

CRITICAL
If this TCPIPSERVICE is closed, or abnormally stops listening for any
reason, the group name specified in the DNSGROUP attribute is
deregistered from WLM.

NONCRITICAL
If this TCPIPSERVICE is closed, or abnormally stops listening for any
reason, the group name specified in the DNSGROUP attribute is not
deregistered from WLM, unless this is the last service in a set with the
same group name.

One option is added to the CEMT SET TCPIPSERVICE command:

DNSSTATUS
allows deregistration of this TCPIPSERVICE.

Changes to problem determination
Sockets domain dump formatting is extended to include details about the DNS
registration. This includes the GRPNAME, GRPCRITICAL, and DNSSTATUS
attributes for each TCPIPSERVICE.

164 CICS Transaction Server: Release Guide

Chapter 12. Automatic restart of CICS data-sharing servers

This chapter describes automatic restart for CICS data-sharing servers. It covers
the following topics:
v “Overview”
v “Benefits” on page 166
v “Requirements” on page 166
v “Changes to CICS externals” on page 166

Overview
All three types of CICS data-sharing server—temporary storage, coupling facility
data tables, and named counters—now support automatic restart using the services
of the MVS automatic restart manager (ARM). The servers also have the ability to
wait during start-up, using an event notification facility (ENF) exit, for the coupling
facility structure to become available if the initial connection attempt fails.

Automatic restart
During initialization, a data-sharing server unconditionally registers with ARM,
except when starting up for unload or reload. A server does not start if registration
fails, with return code 8 or above.

If a server encounters an unrecoverable problem with the coupling facility
connection, consisting either of lost connectivity or a structure failure, it cancels
itself using the server command CANCEL RESTART=YES. This terminates the existing
connection, closes the server and its old job, and starts a new instance of the
server job.

You can also restart a server explicitly using either the server command CANCEL
RESTART=YES, or the MVS command CANCEL jobname,ARMRESTART

By default, the server uses an ARM element type of SYSCICSS, and an ARM
element identifier of the form DFHxxnn_poolname where xx is the server type (XQ,
CF or NC) and nn is the one- or two-character &SYSCLONE identifier for the MVS
system. You can use these parameters to identify the servers for the purpose of
overriding automatic restart options in the ARM policy.

Waiting on events during initialization
If a server is unable to connect to its coupling facility structure during server
initialization because of an environmental error, such as no coupling facility being
available, or loss of connectivity to the structure, the server uses an ENF event exit
to wait for cross-system extended services (XES) to indicate that it is worth trying
again. The event exit listens for either:

v A specific XES event indicating that the structure has become available, or

v A general XES event indicating that some change has occurred in the status of
coupling facility resources (for example, when a new CFRM policy has been
activated).

When a relevant event occurs, the server retries the original connection request,
and continues to wait and retry until the connection succeeds. A server can be
cancelled at this stage using an MVS CANCEL command if necessary.

© Copyright IBM Corp. 2001 165

Benefits
Automatic restart of the CICS servers ensures that any interruption to service is
kept to a minimum by ensuring that a failed server restarts without operator
intervention.

Requirements
The hardware and software requirements for automatic restart of data-sharing
servers are the same as for CICS TS generally.

Changes to CICS externals
There are changes to a number of CICS externals in support automatic restart of
CICS data sharing servers. The externals affected are:

v “Changes to server initialization”

v “Changes to server commands”

v “Changes to problem determination” on page 167

Changes to server initialization
A new category of parameters, for automatic restart manager, is added to the
existing set that you use for server startup. These new server initialization
parameters enable you to override default processing for the automatic restart
function.

Automatic restart manager (ARM) parameters
The new server startup parameters for ARM support are:

ARMELEMENTNAME=elementname
specifies the automatic restart manager element name, up to 16 characters, to
identify the server to ARM for automatic restart purposes. The permitted
characters for the element name are A to Z 0-9 $ # @ and the underscore
symbol (_)..

The default identifier is of the form DFHxxnn_poolname, where xx is the server
type (XQ, CF, or NC), nn is the &SYSCLONE value for the system (which can
be either one or two characters), and poolname is the name of the pool served
by the server.

This parameter is only valid at server initialization.

This keyword can be abbreviated to ARMELEMENT or ARMELEMNAME.

ARMELEMENTTYPE=elementtype
specifies the automatic restart manager element type, up to 8 characters for
use in ARM policies as a means of classifying similar elements. The permitted
characters for the element type are A to Z 0-9 $ # and @.

The default element type is SYSCICSS. This parameter is only valid at server
initialization.

This keyword can be abbreviated to ARMELEMTYPE

Changes to server commands
There are some new options on server commands:

166 CICS Transaction Server: Release Guide

CANCEL RESTART={NO|YES}
terminates the server immediately, specifying whether or not automatic restart
should be requested. The default is RESTART=NO.

You can also enter RESTART on its own for RESTART=YES, NORESTART for
RESTART=NO.

ARMREGISTERED
shows whether ARM registration was successful (YES or NO).

ARM
This keyword, in the category of display keywords that represent combined
options, can be used to display all ARM-related parameter values. It can also
be coded as ARMSTATUS.

Changes to problem determination
There are new and changed messages to provide information about servers. See
the CICS Transaction Server for z/OS Migration Guide for details of all new
messages.

Chapter 12. Automatic restart of CICS data-sharing servers 167

168 CICS Transaction Server: Release Guide

Chapter 13. Monitoring and statistics changes

This section describes the monitoring and statistics changes in CICS. It contains the
following topics:
v “Overview”
v “Changes to CICS externals” on page 170

Overview
There are numerous changes and additions to CICS monitoring data and statistics,
as follows:

v A number of additions and improvements have been made to performance class
records. They are aimed primarily at improving the way that the monitoring data
can be used for offline performance analysis and tuning.

v There are new CICS statistics for CorbaServer resources, derived mainly from
the installed CORBASERVER resource definitions.

v There are new CICS global statistics for the pool of JVMs.

v There are new CICS statistics for the request model resources, derived mainly
from the installed REQUESTMODEL resource definitions.

v There are new CICS global statistics for TCP/IP support.

v The statistics utility program (DFHSTUP) is enhanced to provide reports for the
new CorbaServer, JVM pool, request model, and TCP/IP statistics data as well
as enhancements to some existing reports in support of new function provided in
this release.

v The statistics sample program (DFH0STAT) is enhanced to provide reports for
the new CorbaServer, JVM pool, request model, and TCP/IP statistics data, as
well as enhancements to some existing reports in support of new function.

Monitoring
Additions and changes to CICS monitoring data are summarized in the following
sections.

Additions and changes to monitoring data
There are many new performance class data fields in support of the following:
v Open transaction environment
v Java Virtual Machine (JVM)
v Enterprise JavaBeans support
v TCP/IP support enhancements
v CICS Web support enhancements

Revised sample monitoring control tables (MCTs) are provided for a terminal-owning
region (TOR), an application-owning region (AOR), and a file-owning region (FOR).
These show you the types of fields that can be excluded to reduce the size of the
performance class record output by CICS monitoring. Using these sample MCTs,
you can reduce the size of a performance record by:
v 688 bytes for a TOR
v 96 bytes for an AOR
v 800 bytes for an FOR.

Statistics
There are additional statistics for CorbaServer resources, known by the resource
type name CORBASERVER, and mapped by a new copybook, DFHEJRDS.

© Copyright IBM Corp. 2001 169

There are additional statistics for the JVM pool, known by the resource type name
JVMPOOL, and mapped by a new copybook, DFHSJGDS, with statistics record ID
117.

There are additional statistics for request model resources, known by the resource
type name REQUESTMODEL, and mapped by a new copybook, DFHIIRDS.

There are additional statistics for TCP/IP, known by the resource type name TCPIP,
and mapped by a new copybook, DFHSOGDS.

There are changes to a number of CICS statistics copybooks to provide additional
information about resources. The changed copybooks are:
v Dispatcher statistics (DFHDSGDS)
v File statistics (DFHA17DS)
v TCP/IP service statistics (DFHSORDS)

For more information, see the CICS Performance Guide.

Changes to CICS externals
The general changes to CICS monitoring and statistics result in a number of
changes to CICS externals:
v “Changes to the system programming interface”
v “Changes to CICS-supplied transactions” on page 172
v “Changes to sample programs” on page 172
v “Changes to utility programs” on page 173
v “Changes to monitoring data” on page 173.

Changes to the system programming interface
The CICS system programming interface (SPI) is enhanced for monitoring and
statistics with additional options on the EXEC CICS COLLECT STATISTICS and the
EXEC CICS PERFORM STATISTICS RECORD commands.

EXEC CICS COLLECT STATISTICS
The EXEC CICS COLLECT STATISTICS command returns the current statistics for
a named resource or resource type.

COLLECT STATISTICS

XX COLLECT STATISTICS
...

CORBASERVER(data-value)
...

JVMPOOL
...

REQUESTMODEL(data-value)
...

TCPIP
...

XY

You can request specific statistics only for the CORBASERVER resource type,
using the option CORBASERVER(data-value), where data-value is the 4-character
name of the Corba server.

170 CICS Transaction Server: Release Guide

You can request global statistics only for the JVMPOOL resource type, using the
option JVMPOOL.

You can request specific statistics only for the REQUESTMODEL resource type,
using the option REQUESTMODEL(data-value), where data-value is the 8-character
name of the request model.

You can request global statistics only for the TCPIP resource type, using the option
TCPIP.

Copybooks that map the returned statistics are provided in ASSEMBLER, COBOL,
and PL/I. The copybooks are supplied in the following libraries:

ASSEMBLER CICSTS21.CICS.SDFHMAC
COBOL CICSTS21.CICS.SDFHCOB
PL/1 CICSTS21.CICS.SDFHPL1

A full list of the statistics data copybooks that you can use is provided in the CICS
Performance Guide.

v The new copybook for the CorbaServer resource statistics is DFHEJRDS.

v The new copybook for the JVM pool global statistics is DFHSJGDS.

v The new copybook for the request model resource statistics is DFHIIRDS.

v The new copybook for the TCP/IP global statistics is DFHSOGDS.

COLLECT STATISTICS exception conditions
There are no new exception conditions for the COLLECT STATISTICS command.
The existing IOERR, NOTAUTH, and NOTFND can occur for the new
CORBASERVER, JVMPOOL, REQUESTMODEL, and TCPIP resource names.

EXEC CICS PERFORM STATISTICS RECORD
The PERFORM STATISTICS RECORD command causes the statistics for a named
resource to be written immediately to the SMF data set.

PERFORM STATISTICS RECORD

XX PERFORM STATISTICS RECORD PERF1 XY

PERF1

...
CORBASERVER
...
JVMPOOL
...
REQUESTMODEL
...
TCPIP
...

Specify CORBASERVER for the Corba server resource statistics to be written
immediately to the SMF data set.

Chapter 13. Monitoring and statistics changes 171

Specify JVMPOOL for the JVM pool global statistics to be written immediately to the
SMF data set.

Specify REQUESTMODEL for the request model resource statistics to be written
immediately to the SMF data set.

Specify TCPIP for the TCP/IP global statistics to be written immediately to the SMF
data set.

PERFORM STATISTICS exception conditions
There are no new exception conditions for the PERFORM STATISTICS command.
The existing IOERR, NOTAUTH, and NOTFND can occur for the new
CORBASERVER, JVMPOOL, REQUESTMODEL, and TCPIP resource names.

Changes to CICS-supplied transactions
The CORBASERVER, JVMPOOL, REQUESTMODEL, and TCPIP options are
added to the CEMT PERFORM STATISTICS RECORD command. These options
cause statistics for the named resources to be written immediately to the SMF data
set, as in the EXEC CICS PERFORM STATISTICS RECORD command.

Changes to sample programs
There are changes to the existing monitoring and statistics sample programs,
DFH$MOLS and DFH0STAT.

DFH$MOLS sample monitoring program
DFH$MOLS is enhanced to:

v Handle SMF 110 monitoring data records for CICS TS Version 2 and CICS TS
Version 1, in addition to CICS/ESA® Versions 3 and 4

DFH0STAT sample statistics program
DFH0STAT, the statistics sample program, is enhanced to produce the following
additional statistics reports:
v TCP/IP
v Data set names
v The JVM pool
v The EJB system data sets DFHEJDIR and DFHEJOS
v CorbaServers and DJARs
v DJARs and enterprise beans
v Requestmodels

Various improvements are made to the following statistics reports:
v System status
v Transaction manager and dispatcher
v Storage manager
v Files
v TCP/IP services
v Terminal autoinstall
v Page index.

There are also major changes to the structure of DFH0STAT, and it is supplied in
executable form in SDFHLOAD. See “Changes to DFH0STAT” on page 180 for
details.

172 CICS Transaction Server: Release Guide

Changes to utility programs
DFHSTUP, the statistics utility program, is enhanced to

v Produce additional statistics reports for:
– CorbaServers
– The JVM pool
– Request models
– TCP/IP

v Produce improved statistics reports for:
– Dispatcher
– Files
– TCP/IP services

Changes to monitoring data
The following sections describe the changes to monitoring data fields.

Additional performance class data fields
The following table shows the additional performance class data fields that are
added in this release.

Table 10. Additional performance class data fields

Group Name Field-Id Description

DFHSOCK 245 TCP/IP service name

DFHSOCK 246 TCP/IP service port number

DFHSOCK 289 Socket extract request count

DFHSOCK 290 Create non-persistent socket request count

DFHSOCK 291 Create persistent socket request count

DFHSOCK 292 Non-persistent socket high-water-mark

DFHSOCK 293 Persistent socket high-water-mark

DFHSOCK 294 Socket receive request count

DFHSOCK 295 Socket characters received

DFHSOCK 296 Socket send request count

DFHSOCK 297 Socket characters sent

DFHSOCK 298 Socket total request count

DFHSOCK 299 Outbound socket I/O wait time

DFHSYNC 199 OTS indoubt wait time

DFHTASK 192 Request receiver wait time

DFHTASK 193 Request processor wait time

DFHTASK 194 OTS Transaction id (Tid)

DFHTASK 262 User-task Key 8 TCB dispatch time

DFHTASK 263 User-task Key 8 TCB CPU time

DFHTASK 273 CICS JVM initialize elapsed time

DFHTASK 275 CICS JVM reset elapsed time

DFHTERM 197 Network qualified name network ID

DFHTERM 198 Network qualified name network name

DFHWEBB 224 WEB read request count

DFHWEBB 225 WEB write request count

Chapter 13. Monitoring and statistics changes 173

Table 10. Additional performance class data fields (continued)

Group Name Field-Id Description

DFHWEBB 238 WEB extract request count

DFHWEBB 239 WEB browse request count

Changed performance class data fields
The following table shows the changed performance class data fields.

Table 11. Changed performance class data fields

Group Name Field-Id Description

DFHSOCK 241 Inbound socket I/O wait time

DFHTASK 164 Transaction flags

174 CICS Transaction Server: Release Guide

Part 4. Miscellaneous changes

This Part describes a number of miscellaneous changes to CICS TS. They are
described in the following chapter:

v “Chapter 14. Other changes and enhancements” on page 177

© Copyright IBM Corp. 2001 175

176 CICS Transaction Server: Release Guide

Chapter 14. Other changes and enhancements

This chapter describes a number of small changes to CICS and CPSM. It covers
the following topics:
v “Integrated CICS translator”
v “Sample program for the XLGSTRM global user exit” on page 178
v “Removal of support for the DFHDCT macro” on page 179
v “Changes to CICS file control” on page 179
v “Changes to DFH0STAT” on page 180
v “Changes to other sample programs” on page 183
v “Changes to CEOT transaction” on page 183
v “Changes to CICSPlex SM support” on page 184
v “Changes in the visual presentation of the CICSPlex SM Web user interface” on

page 185
v “Support for additional code pages” on page 185

Integrated CICS translator
This section describes the integration of the CICS command translator with
Language Environment-conforming COBOL and PL/I compilers.
v “Overview”
v “Benefits”
v “Requirements”
v “Change to CICS externals” on page 178

Overview
In earlier releases, CICS application programs have to be translated before they
can be compiled. The translators find EXEC CICS commands, make them into
comments, and generate CALLs appropriate to the language. The CICS-supplied
jobs for compiling user application programs all contain an initial job step that
invokes the translator appropriate to the compiler invoked in the following job step.

Now, if you use one of the Language Environment-conforming compilers that has
integrated the CICS translator, translation of the EXEC CICS commands takes
place during program compilation.

Benefits
The stand-alone translators change the line numbers in source programs, which
means that an intermediate listing, with the translator-generated CALLs, must be
used when debugging an application program. With the integrated translator,
application development is made easier because there is only one listing—the
original source statements.

The process of translating and compiling is also less error-prone because it is no
longer necessary to translate included members separately.

Requirements
The integrated CICS translator is supported by the following releases of the COBOL
and PL/I compilers.

v IBM COBOL for OS/390 & VM, Version 2 Release 2, program number 5648-A25,
with the PTF for APAR PQ45462.

v IBM VisualAge PL/I for OS/390, Version 2 Release 2.1, program number
5655-B22, with the PTF for APAR PQ45562.

© Copyright IBM Corp. 2001 177

Change to CICS externals
There are no changes to CICS external interfaces for the integrated CICS
translator, but compilers that support the integrated translator make some
CICS-supplied procedures redundant. Also, if you are using the integrated translator
through one of the new compilers, you specify CICS translator options on a new
compiler option:
v “Using the CICS-supplied procedures”
v “Specifying CICS translator options”

Using the CICS-supplied procedures
The CICS-supplied procedures that can be used to translate, compile, and link-edit
application programs continue to be supported. However, it is recommended that
these procedures are not used if the integrated CICS translator is supported by the
language compiler.

The Language Environment-conforming language compilers that support the
integrated CICS translator scan the application source and call the integrated CICS
translator at relevant points.

Specifying CICS translator options
To specify CICS translator options when using PL/I with the integrated translator,
specify the compiler preprocessor option, PP(CICS), followed by the CICS translator
options inside parentheses. For example:
PP(CICS(’opt1 opt2 optn ...’))

where opt1 opt2 optn are options to be passed to the CICS translator. You can
specify the PP compiler option wherever PL/I compiler options can be specified.

To invoke the integrated translator when using the COBOL compiler, specify the
compiler option CICS, and follow this with the CICS translator options inside
parentheses. For example:
// PARM=’NODYNAM,LIB,OBJECT,RENT,MAP,XREF,CICS(’’NOEDF,SP’’)’

Note: If specified on the PARM string, the CICS translator options must be
enclosed in double apostrophes.

Sample program for the XLGSTRM global user exit
If a log stream connection request from CICS to the MVS system logger fails
because the log stream is not defined to MVS, CICS issues a request to the MVS
system logger to create the log stream dynamically, using a model log stream
definition.

The XLGSTRM global user exit, in the log manager domain, is invoked when the
CICS log manager detects that a log stream does not exist and before it calls the
MVS system logger to define the log stream dynamically. You can use an
XLGSTRM exit program to modify the request to MVS to create the new log stream.
You could, for example:

v Change the model log stream name passed to the MVS system logger

v Change some of the values in the log stream parameter list used by the MVS
system logger to define the log stream.

To help you customize log manager requests, CICS provides the source of a new
sample program, DFH$LGLS, which you can use as a skeleton on which to base
your own XLGSTRM global user exit program. The sample program, which is

178 CICS Transaction Server: Release Guide

supplied in the CICSTS21.CICS.SDFHSAMP library, shows you how to access and
change some of the parameters passed to your exit program. Specifically, it:

v Changes the model log stream name referenced by the UEPMLSN exit-specific
parameter

v Uses the IXGINVNT macro to change the value of the HIGHOFFLOAD
parameter in the log stream definition parameter list pointed to by the UEPIXG
exit-specific parameter.

Note: To run the sample program as supplied, first create a model log stream
called CICSAD01.DEPT0001.MODEL100. However, you will probably want
to tailor the sample to suit your own environment. The source code contains
comments to help you do this.

Removal of support for the DFHDCT macro
Runtime support in CICS for the destination control table (DCT) is removed:

v The DCT system initialization parameter is obsolete as a system initialization
table (SIT) option and as a system initialization override.

v Transient data (TD) destinations can be defined only in the CSD, as TDQUEUE
resource definitions. Migrate your existing DCTs to TDQUEUE resource
definitions using the DFHCSDUP MIGRATE command.

v The DFHDCT macro is supported only for migration purposes.

See the CICS Operations and Utilities Guide for information on how to migrate
DCTs to the CSD using the DFHCSDUP utility program.

See the CICS Operations and Utilities Guide for information on how to define
TDQUEUEs.

Changes to CICS file control
In earlier releases of CICS, you can define application files as remote files, but you
cannot define CICS system files as remote files. For example, a CICS business
transaction services (BTS) repository data set may need to be shared between a
number of CICS regions in a sysplex. In CICS TS 1.3, BTS repository data sets can
only be shared by using them in RLS mode; that is, by defining them as
RLSACCESS(YES).

The changes to file control permit a CICS system file (but not the CSD) to be
defined as a remote file, enabling it to be shared by any number of
application-owning regions (AORs). This change enables some CICS system files to
be shared through a file-owning region (FOR), providing an alternative to RLS. The
change is effective for the following system data sets only:

v CICS BTS repository data sets

v The EJB directory file, DFHEJDIR

v The EJB object store file, DFHEJOS.

CICS file control requests to these data sets can now be function-shipped, just like
any remote VSAM file used by an application program.

Changes to file control API
The restriction that prevents RESP2 values for a remote file exception condition
being returned to an AOR is removed. Where applicable, RESP2 values are
returned for all file control exception conditions for local and remote files.

Chapter 14. Other changes and enhancements 179

Removal of VSAM support in the DFHFCT macros
All VSAM file support is removed from the DFHFCT macros, leaving the file control
table (FCT) as a BDAM-only table.

A consequence of removing the VSAM support from the FCT means that you
cannot use the CICS TS 2.1 macros to assemble an old FCT with the MIGRATE
option in readiness for migrating the VSAM file definitions to the CSD. Also, the
CSD utility program, DFHCSDUP, no longer supports the use of the MIGRATE
command for the FCT.

Changes to global user exits in the file control domain

Note: A service PTF for the following APAR is required to support this function:

v PQ51277 (Introduce XFCFRIN and XFCFROUT exits)

Two new global user exits are introduced in the file control domain:

XFCFRIN
is invoked on entry to the main file control request gate, FCFR. It allows
you to:

v Monitor file control requests and allow them to continue, to be processed
by CICS file control

v Intercept file control requests and bypass CICS file control processing
altogether

v Redirect the request to a remote region.

XFCFROUT
is invoked on exit after successful or unsuccessful completion of a file
control request. It allows you to monitor the results of completed file control
requests. This exit is also invoked after exit XFCFRIN determines that CICS
file control processing should be bypassed.

The XFCREQ and XFCREQC exits are no longer invoked, on the target region, for
function-shipped requests. To intercept a function-shipped file control API request
on the target region, use the XFCFRIN exit.

Changes to DFH0STAT
The sample statistics program, DFH0STAT, produces a report showing
comprehensive system information about CICS resources (except for terminals and
FEPI resources), and an overview of the MVS storage in use. The program
demonstrates how you can use EXEC CICS INQUIRE and EXEC CICS COLLECT
STATISTICS commands to produce an analysis of your CICS regions. You can use
the sample program as supplied, or modify it to suit your needs.

In earlier releases of CICS, DFH0STAT is supplied in source form only, with
supporting subroutines in assembler. Although the main programs are still written in
COBOL and supplied in source form in the CICSTS21.CICS.SDFHSAMP library, it
is now also supplied in pregenerated form in CICSTS21.CICS.SDFHLOAD. The
executable version of the program is compiled using a Language
Environment-conforming compiler (IBM COBOL for OS/390 & VM 2.1.1) and
link-edited with the Language Environment resident routines using the SCEELKED
library of OS/390 Release 8.

180 CICS Transaction Server: Release Guide

|

|

|

|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|

There are also HTML versions of the BMS maps supplied with the sample
application, to enable you to run the STAT transaction using the CICS Web
interface.

The restructured sample statistics program consists of the following components, all
of which are defined in the CSD group DFH$STAT:

COBOL programs
There are five COBOL programs: DFH0STAT, the main program, which is link
edited with four other COBOL modules:
DFH0STAT

This is the main program, which handles all BMS screen input/output,
and the open and close of the JES SPOOL. It links to DFH0STLK,
which controls all the other routines.

DFH0STLK
This COBOL module is called from DFH0STAT. DFH0STLK performs
the following functions:
v Initializes the page numbers
v Links to DFH0STSY.
v Links to DFH0STTP.
v Links to DFH0STPR.
v Prints the page index if selected.

DFH0STPR
This COBOL module is called from DFH0STLK to print the collected
statistics for:
v Program and terminal autoinstall and VTAM
v Connections and modenames
v TCP/IP
v TCP/IP services
v JVMPOOL
v EJB system data sets
v CORBAServers and DJARs
v DJARs and enterprise beans
v REQUESTMODELs
v Files and data set names
v Data tables
v DB2 connection and entries
v User exit programs and global user exits
v Enqueue manager and recovery manager.

DFH0STSY
This COBOL module is called from DFH0STLK to print system status
and the collected statistics for:
v Transaction manager
v Dispatcher
v Storage manager (DSAs)
v Loader

DFH0STTP
This COBOL module is called from DFH0STLK to print the collected
statistics for:
v Transaction classes
v Transactions
v Programs (and programs by DSA and LPA)
v Temporary storage (global)
v Temporary storage queues
v Transient data (global and resource)
v Journal names and log streams

Chapter 14. Other changes and enhancements 181

DFH0STCM
The communications area (COMMAREA) used for communication between all
the COBOL programs in the DFH0STAT suite.

DFH$STAS
The assembler language subroutine called by the COBOL module DFH0STSY.

DFH$STCN
The assembler language subroutine called by three COBOL modules:
DFH0STPR, DFH0STSY, and DFH0STTP.

DFH$STTB
The assembler language table of global user exit names, loaded by the COBOL
module DFH0STPR.

DFH0STM
This is the name of one of the map set source files supplied in SDFHSAMP,
and also the name of one of the physical mapsets, used by STAT transaction in
program DFH0STAT, supplied in SDFHLOAD.

DFH0STS
This is the name of one of the map set source files supplied in SDFHSAMP,
and also the name of one of the physical mapsets, used by STAT transaction in
program DFH0STAT, supplied in SDFHLOAD.

DFH0STMU
This is the name of the HTML version of the map set DFH0STM, supplied in
SDFHSAMP.

DFH0STSU
This is the name of the HTML version of the map set DFH0STS, supplied in
SDFHSAMP.

STAT
The transaction that invokes DFH0STAT.

Note: The DFH$STAT CSD group also defines programs DFH$STED and
DFH$STER, but these are not part of the DFH0STAT sample application.

The sample program can be invoked as follows:

v As a program list table post-initialization (PLTPI) program, after the DFHDELIM
statement.

v As a program list table shut-down (PLTSD) program, before the DFHDELIM
statement.

v As a conversational transaction from a CICS terminal

v From a console

v As a started transaction using the EXEC CICS START command from a
user-written application program

v By a distributed program link request from a user-written application program

To enable you to run the pregenerated sample statistics program from a CICS
terminal:

v Ensure SPOOL=YES is specified as a system initialization parameter for the
CICS region.

v Ensure the OS/390 Release 8 Language Environment (or later) run-time libraries
are included in the STEPLIB and DFHRPL concatenations, as required.

All the required executable code and map sets are supplied ready for use in
CICSTS21.CICS.SDFHLOAD.

182 CICS Transaction Server: Release Guide

To customize the sample statistics application programs:

v You can use the pregenerated map sets. The following map objects are supplied:

– Physical map sets, as load modules in CICSTS21.CICS.SDFHLOAD, which
you can use unchanged.

– Symbolic map sets, named DFH0STMD and DFH0STSD, for use as COBOL
copybooks in DFH0STAT to enable you to recompile the sample program.
These are supplied in CICSTS21.CICS.SDFHSAMP.

– Map set source macros DFH0STM and DFH0STS, in
CICSTS21.CICS.SDFHSAMP, that you can modify if you decide to customize
the maps as well as the sample application programs.

– HTML versions of the maps to enable you to run the sample application using
the CICS Web interface. For information on how to create and load the HTML
versions of the maps into a template data set, see the CICS Transaction
Server for z/OS Installation Guide. See also the sample data set creation job,
DFHDEFDS, supplied in CICSTS21.CICS.SDFHINST.

v If your COBOL compiler does not have the integrated CICS translator, first
translate the customized COBOL program source code, using the translator
options COBOL3 and SP.

v Compile the translated output to produce object code.

v Link-edit the object module to produce a load module, which you store in an
application load library that is concatenated to the DFHRPL DD statement of the
CICS startup job stream.

Changes to other sample programs
The sample CSD extract exit programs, DFH$FORA, DFH0FORC, and DFH$FORP,
are updated to handle changes and additions to CSD resource definitions.

Changes to CEOT transaction
There are new options added to CEOT that allow you to alter the uppercase
translation status (UCTRAN) for your own terminal, for the current session only.

This new option enables you to switch between the uppercase translation options to
suit a specific requirement. For example, you might want to suppress CICS
uppercase translation before using the CEDA transaction to define resources with
attributes that require mixed-case input, such as HFSFILE, JVMCLASS, SHELF,
CERTIFICATE, or DESCRIPTION.

The new keywords are NOUCTRAN, UCTRAN or TRANIDONLY, as shown in the
following syntax diagram:

Chapter 14. Other changes and enhancements 183

CEOT

XX CEOT
PAgeable
AUtopageable

ATi
NOAti

TTi
NOTti

UCtran
NOUctran
TRanidonly

XY

UCTRAN
The uppercase translation status of your terminal is set to ON for the current
session.

NOUCTRAN
The uppercase translation status of your terminal is set to OFF for the current
session.

TRANIDONLY
The uppercase translation status of your terminal is set to translate only
transaction identifiers entered at the terminal for the current session.

Changes to CICSPlex SM support
CICS TS 2.1 CICSPlex SM does not support the following CICS products that were
supported by previous levels of CICSPlex SM:

v CICS/MVS® Version 2.1.2 (5665-403)

v CICS/ESA Version 3.3 (5685-083)

v CICS/VSE® Version 2 (any release) (5686-026)

v CICS Transaction Server for VSE/ESA™ Version 1 (5648-054)

v CICS for OS/2 Version 2.0.1 (5648-036)

However, for all except CICS on VSE, you can obtain CICSPlex SM support by
using a CMAS at an appropriate lower level. Normally, all communicating CMAS
regions should be at the same level, but CICS TS 2.1 CICSPlex SM enables the
following CICS products to be controlled through an appropriate lower level of
CMAS:

v CICS/MVS Version 2.1.2 (5665-403)

v CICS/ESA Version 3.3 (5685-083)

v CICS for OS/2 Version 2.0.1 (5648-036)

CICSPlex SM is a Tivoli-Ready® product that includes Tivoli® Global Enterprise
Manager (GEM) CICSPlex SM Instrumentation. This is a Tivoli GEM agent that
uses the CICSPlex SM API to:

v Gather information about CICS regions that are managed by CICSPlex SM.

v Monitor the operational state of the managed CICS regions and display their
status

v Provide notification when the state of a managed CICS region changes

v Raise Tivoli events on error conditions

v Exploit real-time analysis (RTA) definitions.

184 CICS Transaction Server: Release Guide

Previous levels of CICSPlex SM have provided the ability to populate the Resource
Object Data Manager (RODM) component of NetView with CICS resource state
data. This support for NetView is now stabilized, and new object data is no longer
added to this interface.

Changes in the visual presentation of the CICSPlex SM Web user
interface

The CICSPlex SM Web user interface is changed:

v The colors are modified.

v The navigation icons are moved from the navigation frame to the assistance
frame to enhance usability.

v The visual presentation is modified.

Support for additional code pages
CICS regions on System/390® store character data in EBCDIC format. When they
exchange character data with ASCII-based systems such as CICS for Windows NT
or CICS on Open Systems, the data must be converted between ASCII and
EBCDIC formats. For standard conversion of character data between ASCII and
EBCDIC, client and server code pages are used. (For explanatory information about
data conversion, see the CICS Family: Communicating from CICS on System/390.)

CICS TS supports additional client and server code pages. Many of the code pages
include the new euro currency symbol.

All the client and server code pages supported by CICS are listed in the CICS
Family: Communicating from CICS on System/390.

Chapter 14. Other changes and enhancements 185

186 CICS Transaction Server: Release Guide

Part 5. Requirements

This Part describes the hardware and software requirements for CICS TS in the
following chapter:

v “Chapter 15. Prerequisite hardware and software for CICS Transaction Server for
z/OS” on page 189

© Copyright IBM Corp. 2001 187

188 CICS Transaction Server: Release Guide

Chapter 15. Prerequisite hardware and software for CICS
Transaction Server for z/OS

This chapter gives some information about related IBM program products that you
need to use the CICS and CICSPlex SM elements of CICS Transaction Server for
z/OS, and exploit the new and changed function. It covers the following topics:
v “Hardware prerequisites”
v “Operating system” on page 190
v “IBM database products” on page 191
v “IBM telecommunications access methods” on page 191
v “OS/390 Security Server (RACF)” on page 192
v “CICS VSAM Recovery” on page 192
v “Tivoli Performance Reporter for OS/390” on page 192
v “NetView® for MVS/ESA™” on page 192
v “Programming languages” on page 192
v “CICS components in object-code-only (OCO) form” on page 192

Hardware prerequisites
To run CICS TS with the base (minimum) functional dependency on OS/390 Version
2 Release 8, you need a System/390 processor that supports that release of
OS/390, and which has enough processor storage to meet the combined
requirements of the host operating system, CICS, CICSPlex SM, the access
methods, and the application programs.

Parallel Sysplex
A Parallel Sysplex environment is required by each of the data-sharing facilities
supported by CICS, and by the MVS system logger’s log stream merging facility. If
you use any of these facilities, you need:
v One or more coupling facilities with their associated coupling links installed
v An IBM sysplex timer
v Sufficient DASD paths to support the number of central processor complexes

(CPCs) in the sysplex.

You can use CICS support for data sharing to access the following forms of data:
v IMS databases
v DB2 databases
v VSAM data sets
v CICS temporary storage
v Coupling facility data tables
v Named counters.

Sysplex timer
A Parallel Sysplex requires an IBM sysplex timer to provide a common external time
source.

DASD paths
A Parallel Sysplex requires either DASD controllers with enough paths to dedicate
one to each CPC in the sysplex, or an ESCON® director to provide the paths.

Katakana terminal devices
Old-style Katakana terminals that support only single-byte character sets (SBCS)
cannot display lower-case Western characters. Therefore, because of the

© Copyright IBM Corp. 2001 189

requirement on CICS to issue certain messages in mixed-case, CICS cannot
support display or terminal devices that are restricted to the SBCS Katakana only
part of code page 930.

Operating system
The OS/390 base requirement for CICS TS is OS/390 Version 2 Release 8
(5647–A01) or later, and all the major elements of OS/390 used by CICS must be
at this release level. These are:

v DFSMS/MVS®

v High Level Assembler for MVS & VM

v JES2 or JES3

v Language Environment, plus required service PTFs (see the CICS Transaction
Server for z/OS Program Directory for details).

v MVS base control program (BCP)

v Communications Server

v Security Server

v SMP/E

v TSO/E

v UNIX System Services, plus required service PTFs (see the CICS Transaction
Server for z/OS Program Directory for details).

For the following specific functions, you need the additional software shown in the
table:

CICS TS Function Required software

Support for the Java Virtual Machine
(JVM)

IBM Developer Kit for OS/390, Java 2 Technology
Edition, Version 1.3 (referred to as the IBM
persistent reusable JVM), product number
5655-D35.

EJB support tools IBM Developer Kit for Windows, Java 2 Technology
Edition, Version 1.3, at service level 6, plus the
EJB 1.1 standard interface classes, provided in
javax.ejb.zip and j2ee.jar. See the note 1
below.

Support for JNDI COS naming
directory server

WebSphere Application Server Advanced Edition
for Windows NT, V3.5, which requires Windows NT
V4.0 or later, or Windows 2000. See note 2 below.

CICS TS Information Center To read the online information, a Web browser that:

v Supports HTML 4.0

v Supports the Document Object Model (DOM)
standard

v Has frames support enabled.

Windows NT or Windows 2000 are the
recommended operating environments for the
Information Center.To view and print PDF files,
Adobe Acrobat Reader, 4.0.

Notes:

1. All three of the EJB support tools (CICS JAR development tool for EJB
technology, CICS development deployment tool for EJB technology, and CICS
production deployment tool for EJB technology), and IBM Developer Kit for

190 CICS Transaction Server: Release Guide

#
#
#

Windows, Java 2 Technology Edition, Version 1.3, are all supplied with CICS TS
on a CD-ROM labeled CICS Tools for EJB Technology, LCD4–4355.

2. A subset of WebSphere Application Server Advanced Edition for Windows NT
V3.5 is shipped (on CD-ROM) with CICS TS to provide the required COS
naming directory server support. You are recommended to apply Service Pack
3.

IBM database products
CICS supports IMS/ESA® Database Manager and IBM DATABASE 2™ (DB2) as
described in this section.

IMS/ESA Database Manager
CICS application programs can access IMS databases, through the DBCTL
interface only, using IMS/ESA Database Manager Version 5 Release 1 (5695–176)
or later.

IBM DATABASE 2 (DB2)
CICS application programs can access DB2 databases using DB2 Version 5
(5655–DB2) or later.

For CICS JVM programs that use the JDBC and SQLJ APIs, you need PTF
UQ49041 for APAR PQ39420 on DB2 Version 5, or PTF UQ49039 for APAR
PQ39411 on DB2 Version 6.

IBM telecommunications access methods
VTAM and TCP/IP are included as exclusive elements of OS/390 Release 8.

TCP/IP OS/390 Release 8 includes TCP/IP Socket Interface for CICS, which
enables network users access to CICS regions. CICS programs can use the TCP/IP
sockets application programming interface (API) to communicate with TCP/IP
devices. TCP/IP also enables access to CICS through:

v The CICS ONC RPC support, which enables CICS as a server for Remote
Procedure Call (RPC) requests using the Open Network Communication (ONC)
standard protocol

v DCE/MVS, which enables CICS as a server for Remote Procedure Call requests
using the Distributed Computing Environment (DCE) standard protocol

CICS also uses TCP/IP services for the following protocols:

v Hypertext Transfer Protocol (HTTP), which is supported by the CICS Web API
through the CICS sockets domain.

v Internet InterORB Protocol (IIOP), which is supported by CICS IIOP services
through the CICS sockets domain.

You can access CICS Transaction Server for z/OS using ACF/TCAM (DCB) Version
2.4 (5735–RC3) plus PTFs, or ACF/TCAM (DCB) Version 3.1 (5665–314) plus
PTFs.

MQSeries® for OS/390
If you use MQSeries with CICS TS you need MQSeries for OS/390, Version 2
Release 1 with the PTF for APAR PQ35501, or later.

Chapter 15. Prerequisite hardware and software for CICS Transaction Server for z/OS 191

OS/390 Security Server (RACF)
The Security Server (RACF) available with OS/390 Release 8 provides for all CICS
TS security needs.

CICS VSAM Recovery
If you use CICS VSAM Recovery (CICSVR) as your VSAM forward recovery utility,
CICSVR Version 2.3 (5695–010) is required.

Tivoli Performance Reporter for OS/390
CICS TS is no longer supported by the earlier versions of performance reporter
products (IBM SystemView® Enterprise Performance Data Manager/MVS (EPDM)
or IBM SystemView Performance Reporter for MVS). For CICS TS Version 2, you
need Tivoli Decision Support for OS/390 (5698-TD9) Version 1.5, with a PTF.

NetView® for MVS/ESA™

For a resource object data manager (RODM) repository that CICSPlex SM exploits
through NetView MultiSystem Manager Version 2 Release 2 (5655–126), CICS TS
supports NetView for MVS/ESA Version 3 Release 1 (5655–007).

Programming languages
CICS Transaction Server for z/OS supports the following programming languages
and environments:
v High Level Assembler/MVS (5696–234)
v IBM VisualAge PL/I for OS/390, Version 2 (5655–B22)

Note: You need Version 2 Release 2 Modification 1, with the PTF for APAR
PQ45562 for the integrated CICS translator.

v IBM PL/I for MVS & VM (5688–235)
v OS PL/I Optimizing Compiler Version 2 Release 1 (5668–910)
v OS PL/I Optimizing Compiler Version 1 Release 5 (5724–PL1)
v IBM COBOL for OS/390 & VM, Version 2, (5648–A25)

Note: You need Version 2 Release 2, with the PTF for APAR PQ45462 for the
integrated CICS translator.

v IBM COBOL for MVS & VM (5688–197)
v VS COBOL II (5668–958 and 5668–023) (requires PTF for APAR 43097)
v C/370™ (5688–040 and 5688–187)
v IBM C/C++ for MVS (5655–121)
v CSP Version 3 or later
v SAA AD/Cycle® COBOL/370™ (5688–197)
v SAA AD/Cycle PL/I (5688–235)
v SAA AD/Cycle C/370 (5688–216)
v VisualAge for Java, Enterprise Toolkit for OS/390 (5655-JAV)

CICS components in object-code-only (OCO) form
Some of the functional areas of CICS are provided, either completely or partially, in
object-code-only form (OCO), without licensed source materials. These areas
include:
v Authorized cross-memory (AXM) server environment

192 CICS Transaction Server: Release Guide

v Autoinstall terminal model manager, AITM
v 3270 Bridge
v Business application manager domain
v Catalog domains
v Common Programming Interface functions
v Coupling facility data tables
v Coupling facility data table server
v Directory manager domain
v Dispatcher domain
v Document handler domain
v Dump domain
v Enqueue domain
v Enterprise Java domain
v Event manager domain
v EXEC CICS system programming command support
v File control RLS support
v IIOP domain
v JVM domain
v Kernel domain
v Loader domain
v Lock manager domain
v Log manager
v Message domain
v Monitoring domain
v Named counter server
v Object transaction services domain
v Offline statistics utility
v Offline system dump formatting routines
v Parameter manager domain
v Partner resource manager
v Program manager domain
v RDO for VSAM files and LSR pools
v Recovery manager
v Request streams domain
v Resource recovery services (RRS) interface
v SAA communications and resource recovery interfaces
v Scheduler services domain
v Security domain
v Shared data tables
v Sockets domain
v Statistics domain
v Storage manager domain
v Temporary storage data sharing server
v Temporary storage domain
v Timer domain
v Trace domain
v Transaction manager domain
v User domain
v Web domain.

Chapter 15. Prerequisite hardware and software for CICS Transaction Server for z/OS 193

194 CICS Transaction Server: Release Guide

Part 6. Appendixes

© Copyright IBM Corp. 2001 195

196 CICS Transaction Server: Release Guide

Glossary

CICS-deployed JAR file. A deployed JAR file,
produced specifically (via several intermediate stages)
for the CICS EJB server, which has been stored on the
hierarchical file system (HFS) used by OS/390. This
name is reserved for the original deployed JAR file on
the HFS of a CICS system. (There are no specific
names for JAR files in the various intermediate stages
of deployment).

CICS EJB server. One or more CICS regions that
support enterprise beans. A logical CICS EJB server
typically consists of multiple (cloned) CICS listener
regions and multiple (cloned) CICS AORs. The listener
regions and AORs can be combined into listener/AORs.

container. The code that creates and manages
enterprise bean instances at run-time, and provides the
services required by each enterprise bean running in it.
The EJB container supports a number of implicit
services, including lifecycle, state management, security,
transaction management, and persistence:

CorbaServer. The execution environment defined by a
CORBASERVER definition. A CICS EJB server can
contain multiple CorbaServers.

CORBASERVER. a CICS resource definition that
defines an execution environment for enterprise beans
and CORBA stateless objects. You can install multiple
CORBASERVER definitions into the same CICS region
(giving you different execution environments for
enterprise beans). All the AORs in a logical CICS EJB
server must contain identical CORBASERVER
definitions.

deployed JAR file. A generic term for a file produced
from the ejb-jar file. It contains the XML deployment
descriptor and enterprise bean classes from the ejb-jar
file, plus additional classes generated to support the
chosen EJB container

deployment. In the EJB development environment,
the act of generating EJB deployed classes for a
specific container

deployment descriptor. An XML file defining a
collection of enterprise beans and specifying how an
EJB server should process the beans.

DJAR. A CICS resource definition that defines a
CICS-deployed JAR file. It is not a synonym for the
deployed JAR file itself. Installing the DJAR definition
into CICS causes CICS to:

v Copy the CICS-deployed JAR file (and the classes it
contains) to an HFS ″shelf″ directory that is specific
to the CICS region;

v Read the deployed JAR file from the shelf, parse its
XML descriptor, and store the information it contains;

v Generate the home interface class for each bean in
the JAR file.

EJB. See Enterprise JavaBeans.

enterprise bean. An EJB component that implements
a business task or business entity. Seeentity bean and
session bean.

Enterprise JavaBeans. A component architecture for
the development and deployment of object-oriented,
distributed, enterprise-level applications.

entity bean. An enterprise bean that represents
persistent data maintained in a database. An entity
bean can manage its own persistence or it can delegate
this function to its container. An entity bean is identified
by its primary key. If the container in which an entity
bean is hosted crashes, the entity bean, its primary key,
and its remote references survive the crash. Entity
beans are not supported in this CICS release. See also
session bean.

extensible markup language (XML). A standard
markup language that allows you to define the tags
(markup) needed to identify the data and text in XML
documents. EJB component architecture uses XML to
describe its deployment properties.

factory. An enterprise bean that dynamically creates
instances of beans.

JAR file (Java archive). A platform-independent file
format that aggregates many files into one. Multiple
Java applets and their requisite components (.class files
and other resource files) can be bundled in a JAR file
and subsequently downloaded in a single HTTP
transaction.

Java database connectivity (JDBC). A standard Java
API for accessing databases.

Java naming and directory interface (JNDI). A set of
APIs that assist with the interfacing to multiple naming
and directory services.

Java virtual machine (JVM). A software
implementation of a central processing unit (CPU) that
runs compiled Java code.

JPDA. See Java Platform Debug Architecture.

JVM. See Java virtual machine.

MOF. Meta-Object Facility; a standard for the definition
of information models and the subsequent mapping of
these models to CORBA interfaces.

Remote method invocation (RMI). A protocol that
allows objects to be distributed over the network; that is,

© Copyright IBM Corp. 2001 197

a Java program running on one computer can call the
methods of an object running on another computer.

servlet. Server-side Java class that responds to HTTP
requests.

session bean. An enterprise bean that is created by a
client and that usually exists only for the duration of a
single client/server session. A session bean performs
operations such as calculations or accessing a
database for a client. While a session bean can be
transactional, it is not recoverable in the event of a
system crash. See also entity bean.

XMI. XML metadata interchange; a standard for
exchanging metadata information using XML
technology. See also extensible markup language.

198 CICS Transaction Server: Release Guide

Bibliography

CICS Transaction Server for z/OS

CICS Transaction Server for z/OS Release Guide GC34-5701
CICS Transaction Server for z/OS Migration Guide GC34-5699
CICS Transaction Server for z/OS Installation Guide GC34-5697
CICS Transaction Server for z/OS Program Directory GI10-2525
CICS Transaction Server for z/OS Licensed Program Specification GC34-5698

The above titles are the only unlicensed books available in hardcopy for CICS
Transaction Server for z/OS Version 2 Release 1. All the remaining CICS and
CICSPlex SM books are supplied in softcopy only in the CICS Information Center,
which is distributed on CD-ROM.

CICS books for CICS Transaction Server for z/OS

General
CICS User’s Handbook SX33-6116
CICS Transaction Server for z/OS Glossary GC34-5696

Administration
CICS System Definition Guide SC34-5725
CICS Customization Guide SC34-5706
CICS Resource Definition Guide SC34-5722
CICS Operations and Utilities Guide SC34-5717
CICS Supplied Transactions SC34-5724

Programming
CICS Application Programming Guide SC34-5702
CICS Application Programming Reference SC34-5703
CICS System Programming Reference SC34-5726
CICS Front End Programming Interface User’s Guide SC34-5710
CICS C++ OO Class Libraries SC34-5705
CICS Distributed Transaction Programming Guide SC34-5708
CICS Business Transaction Services SC34-5704
Java Applications in CICS SC34-5881

Diagnosis
CICS Problem Determination Guide GC33-5719
CICS Messages and Codes GC34-5716
CICS Diagnosis Reference LY33-6097
CICS Data Areas LY33-6096
CICS Trace Entries SC34-5727
CICS Supplementary Data Areas LY33-6098

Communication
CICS Intercommunication Guide SC34-5712
CICS Family: Interproduct Communication SC34-0824
CICS Family: Communicating from CICS on System/390 SC34-1697
CICS External Interfaces Guide SC34-5709
CICS Internet Guide SC34-5713

Special topics
CICS Recovery and Restart Guide SC34-5721
CICS Performance Guide SC34-5718
CICS IMS Database Control Guide SC34-5711
CICS RACF Security Guide SC34-5720

© Copyright IBM Corp. 2001 199

CICS Shared Data Tables Guide SC34-5723
CICS Transaction Affinities Utility Guide SC34-5728
CICS DB2 Guide SC34-5707

CICSPlex SM books for CICS Transaction Server for z/OS

General
CICSPlex SM Concepts and Planning GC34-5732
CICSPlex SM User Interface Guide SC34-5743
CICSPlex SM Commands Reference Summary SX33-6117
CICSPlex SM Web User Interface Guide SC34-5403

Administration and Management
CICSPlex SM Administration SC34-5729
CICSPlex SM Operations Views Reference SC34-5739
CICSPlex SM Monitor Views Reference SC34-5738
CICSPlex SM Managing Workloads SC34-5735
CICSPlex SM Managing Resource Usage SC34-5734
CICSPlex SM Managing Business Applications SC34-5733

Programming
CICSPlex SM Application Programming Guide SC34-5730
CICSPlex SM Application Programming Reference SC34-5731

Diagnosis
CICSPlex SM Resource Tables Reference SC34-5741
CICSPlex SM Messages and Codes GC34-5737
CICSPlex SM Problem Determination GC34-5740

Other CICS books

Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for OS/390 Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Note: The CICS Transaction Server for OS/390: Planning for Installation book that
was part of the library for CICS Transaction Server for OS/390, Version 1
Release 3, is now merged with the CICS Transaction Server for z/OS
Installation Guide. If you have any questions about the CICS Transaction
Server for z/OS library, see CICS Transaction Server for z/OS Installation
Guide which discusses both hardcopy and softcopy books and the ways that
the books can be ordered.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager® softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

200 CICS Transaction Server: Release Guide

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

Bibliography 201

202 CICS Transaction Server: Release Guide

Index

Special Characters
/etc/resolv.conf 161

A
abend codes

enterprise beans 55
accessing databases

from enterprise beans 19
ACTSOCKETS

CEMT INQUIRE TCPIP command 106
CEMT SET TCPIP 107
INQUIRE TCPIP command 105

application assembler, of EJB application 22
AUTHENTICATE attribute

TCPIPSERVICE definition 63
automatic restart

CICS data-sharing servers 165

B
bean-managed entity beans 16
bean provider 21
BMS (basic mapping support)

assembling and link-editing DFH0STM 183
assembling and link-editing DFH0STS 183
DFH0STM, BMS mapset 183
DFH0STS, BMS mapset 183

C
CEMT INQUIRE TCPIP 106

ACTSOCKETS 106
MAXSOCKETS 106

CEMT PERFORM
STATISTICS RECORD 172

CEMT PERFORM STATISTICS 107
SOCKETS 107

CEMT SET TCPIP 107
ACTSOCKETS 107
MAXSOCKETS 107

CEOT, enhancement 183
changes to CICSPlex SM communication areas 145
CICS Connector for CICS TS

benefits of 79
changes to CICS externals

messages 81
trace points 81

data conversion 73
how to use 69
installation 80
overview 65
requirements 79
restrictions 79
setting object attributes 71
using the CCF interface 69
using the CTG API interface 76

CICS Connector for CICS TS (continued)
using with VisualAge for Java 74

CICS development deployment tool 120
CICS resource definitions 126
installing and configuring CICS components 126
security 128
user ID 128

CICS-supplied transactions
CEMT PERFORM STATISTICS RECORD 172
CEOTenhanced 183

CICS TS
summary 3

CICS/VSE, CICSPlex SM support withdrawn 184
CICSCGU 118
CICSPlex SM and enterprise beans 129
CICSPlex SM transaction affinities 145
CICSPlex SM workload balancing 142
CICSPlex SM workload management

changes to communication areas 145
enterprise beans 141
transaction affinities 145
workload balancing 142
workload separation 143

CICSPlex SM workload separation 143
CICSPlex SM Web User Interface 185
code generation tool 118
COLLECT STATISTICS command

JVMPOOL 99
SOCKETS 106

connection optimization 159
connectors

CICS Connector for CICS TS
benefits of 79
changes to CICS externals 81
data conversion 73
how to use 69
installation 80
overview 65
requirements 79
setting object attributes 71
using with VisualAge for Java 74

container-managed entity beans 16
CORBA support

benefits 62
changes to externals 63
overview 59
requirements 63
stateless CORBA objects 59

CREATE commands
PROGRAM 99

CRITICAL value 163, 164

D
Data Access beans

described 20
data conversion, new code pages 185

© Copyright IBM Corp. 2001 203

data-sharing servers
automatic restart 165

DATABASE 2 and CICS 191
databases and CICS 191
DB2 and CICS 191
DCT= system initialization parameter 179
DebugControl interface 97
Debugging CICS JAVA applications 88
deployer, of EJB application 22
deploying enterprise beans 23

deployment configuration file 125
development deployment tool 120

deployment tools
service updates 125

DEREGERROR 163, 164
DEREGISTERED 163, 164
DFH$MOLS sample monitoring program 172
DFH0STAT, statistics sample program

changes 180
DFH0STAT sample statistics program 172
DFH0STCM, new COMMAREA for DFH0STAT 182
DFH0STLK, new DFH0STAT module 181
DFH0STM, BMS mapset 183
DFH0STPR, new DFH0STAT module 181
DFH0STS, BMS mapset 183
DFH0STSY, new DFH0STAT module 181
DFH0STTP, new DFH0STAT module 181
DFHDCT macro 179
DFHEJDIR, EJB request streams directory file 28
DFHEJOS, EJB passivated session beans file 28
DFHFCT macro 180
DFHSTUP utility program 173
DNS

name resolution 159
registration 159

DNS connection optimization 159
DNSGROUP 163, 164
DNSGROUP attribute 162

TCPIPSERVICE definition 64
DNSSTATUS attribute 163, 164
DNSSTATUS value 163, 164
domain name system connection optimization 159
dynamic LUALIAS 149

E
EJB

definition of 197
EJB container 12
EJB server 11
enhanced TCP/IP support 103
enterprise beans

accessing databases 19
benefits 31
changes to CICS externals

abend codes 55
API 48
CICS supplied transactions 52
exit programming interface (XPI) 53
global user exits 53
messages 54

enterprise beans (continued)
changes to CICS externals (continued)

monitoring 54
problem determination 54
resource definition 34
sample programs 56
SPI 48
statistics 54
system definition 33
system initialization 33
task waits 56
trace points 55
user-replaceable programs 54

CICS Connector for CICS TS 65
CICSPlex SM 129
configuring CICS server 24
deployment 23, 111
deployment descriptor 14
described 11
EJB container 12
EJB server 11
entity beans

bean-managed 16
comparison with session beans 17
container-managed 16
described 16
primary key 16

environment 14
example pseudocode 30
home interface 13
in a sysplex 25
managing transactions 17
overview 10
remote interface 13
requirements 32
security 21
session beans

comparison with entity beans 17
described 15
stateful 16
stateless 16

setting up a logical EJB server 27
use of Data Access beans 20
user tasks

application assembler 22
bean provider 21
deployer 22
system administrator 23

workload balancing 25
workload management of 141

Enterprise Java Beans 147
Enterprise JavaBeans 7
enterprise management 169
entity beans

bean-managed 16
comparison with session beans 17
container-managed 16
described 16
primary key 16

euro currency symbol 185
example pseudocode, for EJB clients 30

204 CICS Transaction Server: Release Guide

EXEC CICS COLLECT STATISTICS command 170
EYURWCOM 145
EYURWTRA 145

G
gethostbyaddr function 161
glossary 197
GRPCRITICAL attribute 162
GRPCRITICAL value 163, 164

H
hardware prerequisites 189
home interface, of enterprise beans 13

I
IIOP

benefits 62
DNS 62
dynamic routing 62
enhancements 59
request processing 61
requirements 63
TCP/IP port sharing 62
Workload balancing 62

IMS
and CICS 191

INQUIRE JVMPOOL command 98
INQUIRE TCPIP

ACTSOCKETS parameter 105
CEMT 106
MAXSOCKETS parameter 105

INQUIRE TCPIP command 105
INQUIRE TCPIPSERVICE 163, 164
integrated CICS translator 177

J
Java Naming and Directory Interface (JNDI) 109
Java support

accessing databases 19
CICS Connector for CICS TS

benefits of 79
changes to CICS externals 81
data conversion 73
how to use 69
installation 80
overview 65
requirements 79
restrictions 79
setting object attributes 71
using with VisualAge for Java 74

Data Access beans 20
enterprise beans

benefits 31
changes to CICS externals 32
deployment 23
deployment descriptor 14

Java support (continued)
enterprise beans (continued)

described 11
EJB container 12
EJB server 11, 24
entity beans 16
environment 14
example pseudocode 30
home interface 13
managing transactions 17
overview 10
remote interface 13
requirements 32
security 21
session beans 15
setting up a logical EJB server 27
user tasks 21

JavaBeans
described 11

JavaBeans
described 11

JNDI
support 109

JPDA 88
JVM

debugging 88
OS/390 1.3 83
plugin mechanism 97

JVMPOOL, COLLECT command 99
JVMPOOL, PERFORM STATISTICS command 100

L
logical EJB server

described 25
setting up 27

M
MAXOPENTCBS, system initialization parameter 89
MAXSOCKETS

CEMT INQUIRE TCPIP 106
CEMT SET TCPIP 107
INQUIRE TCPIP command 105
SET TCPIP command 106
system initialization parameter 105

messages
CICS Connector for CICS TS 81
enterprise beans 54

miscellaneous enhancements 177
monitoring and statistics 169

CEMT PERFORM STATISTICS 172
changes to externals 170

CICS-supplied transactions 172
sample programs 172
system programming interface 170

EXEC CICS COLLECT STATISTICS command 170
monitoring 169
monitoring data changes 173
overview 169
PERFORM STATISTICS RECORD command 171

Index 205

monitoring and statistics (continued)
performance class data 174
statistics 169
utility programs 173

N
NEWMAXSOCKETS

SET TCPIP command 106
NONCRITICAL value 163, 164
NOTAPPLIC 163, 164

O
object code only (OCO) 192
operating system

level required for CICS Transaction Server for
z/OS 190

P
PERFORM STATISTICS command

JVMPOOL 100
PERFORM STATISTICS RECORD command 171
performance class data

fields 174
persistent reusable JVM 83
PHASEOUT option

INQUIRE JVMPOOL command 98
Plugin interface 97
prerequisite software

IBM DATABASE 2 (DB2) 191
IMS/ESA 191
TCAM and CICS 191
VTAM and CICS 191

prerequisites
hardware 189
MVS 190
OS/390 190

primary key, entity beans 16
programming languages supported 192

R
RACF

required release for CICS Transaction Server for
z/OS 192

REGERROR 163, 164
REGISTERED 163, 164
remote interface, of enterprise beans 13
requirements, hardware 189
RESOLVER_CONFIG environment variable 161, 162
resolver configuration data set 161
resource security 192

S
sample programs 172
secure sockets layer (SSL) 21

Security
CICS development deployment tool 128

session beans
comparison with entity beans 17
described 15
stateful 16
stateless 16

SET TCPIP
CEMT 107
MAXSOCKETS parameter 106
NEWMAXSOCKETS parameter 106

SET TCPIPSERVICE 163, 164
SIT, removal of DCT= 179
Socket management 103
SOCKETS

CEMT PERFORM STATISTICS 107
COLLECT STATISTICS command 106

sockets, specifying the maximum number 103
stateful session beans 16
stateless CORBA objects 59
stateless session beans 16
statistics sample program, DFH0STAT

changes 180
STATUS option

INQUIRE JVMPOOL command 98
SET JVMPOOL command 99

summary of CICS TS 1
Support for additional code pages 185
SYSTCPD name 161
system initialization parameter DCT= 179
system initialization parameters

MAXOPENTCBS 89
MAXSOCKETS 105

T
task waits

enterprise beans 56
TCAM and CICS 191
TCP/IP

CICS requirement 191
TCP/IP support 103
TCPIPSERVICE definition 162

AUTHENTICATE attribute 63
DNSGROUP attribute 64

TERMINATION option
SET JVMPOOL command 99

TOTAL option
INQUIRE JVMPOOL command 98

trace points
CICS Connector for CICS TS 81
enterprise beans 55

translator
integrated with Language Environment-conforming

compilers 177

U
UNAVAILABLE 163, 164
UNIX System Services

and EJB deployment 128

206 CICS Transaction Server: Release Guide

UNREGISTERED 163, 164

V
VisualAge for Java 74
VTAM

dynamic LUALIAS 149
VTAM and CICS 191

W
WLM, work load manager 161
work load manager 161

Index 207

208 CICS Transaction Server: Release Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 2001 209

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AD/Cycle
AIX
AS/400
BookManager
C/370
CICS
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
COBOL/370
DATABASE 2

DB2
DFSMS
ESCON
IBM
IMS
IMS/ESA
Language Environment
MQSeries
MVS
MVS/ESA
OS/2

OS/390
Parallel Sysplex
RACF
System/390
SystemView
TXSeries
VisualAge
WebSphere
VSE/ESA
VTAM
z/OS

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Tivoli and Tivoli Ready are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

UNIX is a trademark of X/Open Company Limited in the United States, or other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

210 CICS Transaction Server: Release Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To ask questions, make comments about the functions of IBM products or systems,
or to request additional publications, contact your IBM representative or your IBM
authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–842327

– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink
™

: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2001 211

212 CICS Transaction Server: Release Guide

����

Program Number: 5697-E93

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5701-00

Spine information:

��� CICS Transaction Server Release Guide
Version 2
Release 1

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Notes on terminology

	Part 1. Summary of CICS TS
	Chapter 1. Summary of CICS TS
	Enterprise JavaBeans™ in CICS
	Enterprise JavaBeans
	Enhancements to CORBA support
	The CICS Connector for CICS TS
	CICS support for the persistent reusable JVM
	Enhancements to CICS support of TCP/IP
	Java Naming and Directory Interface™ (JNDI)
	Deploying enterprise beans
	CICSPlex® SM management of enterprise beans
	CICSPlex SM workload management of enterprise beans

	System management and Parallel Sysplex® support
	CICS support for VTAM® dynamic alias
	Domain name system (DNS) connection optimization
	Automatic restart of CICS data sharing servers
	Monitoring and statistics changes

	Miscellaneous enhancements and changes
	Hardware and software requirements

	Part 2. Enterprise JavaBeans in CICS
	Chapter 2. Introduction to Enterprise JavaBeans™
	Overview
	The big picture
	JavaBeans and Enterprise JavaBeans
	Components
	JavaBeans
	Enterprise JavaBeans

	The EJB server
	The EJB container
	The execution environment

	The home and remote interfaces
	The deployment descriptor
	Types of enterprise bean
	Session beans
	Entity beans
	Session beans and entity beans compared

	Managing transactions
	Accessing data
	Relational data
	DL/I data
	VSAM data
	Using Data Access beans

	Security
	Authentication
	Access control and EJB security roles

	User tasks
	The bean provider
	The application assembler
	The deployer
	The system administrator

	Deploying enterprise beans
	Configuring CICS as an EJB server
	Logical servers — enterprise beans in a sysplex
	Setting up a logical EJB server

	What can a client do with a bean?
	Get a reference to the bean’s home
	Use the home interface
	Use the remote interface

	What can a bean do?

	Benefits
	Requirements
	Hardware
	Software

	Changes to CICS externals
	Changes to system initialization
	New system initialization parameters
	Changes to existing system initialization parameters
	Obsolete system initialization parameters

	Changes to system definition
	Cloned CICS regions
	VSAM data sets
	Shelf directories

	Changes to resource definition
	New RDO objects
	Changes to existing RDO objects
	Other changes to resource definition

	Changes to the application programming interface
	New Java API commands

	Changes to the system programming interface
	New SPI commands
	Modified SPI commands

	Changes to CICS supplied transactions
	New commands
	Modified commands

	Changes to global user exits
	Changes to the exit programming interface (XPI)
	Changes to user-replaceable programs
	The distinguished name program, DFHEJDNX
	The security program for IIOP
	The dynamic and distributed routing programs

	Changes to monitoring
	Changes to statistics
	CORBASERVER statistics

	Changes to problem determination
	Messages
	Abend codes
	Trace points
	Dump
	Resources on which tasks can wait

	Changes to sample programs
	Sample user-replaceable programs
	Sample programs for RDO

	Chapter 3. Enhancements to CORBA support
	Overview
	Changes affecting existing IIOP applications
	Supported client and server platforms
	IIOP request processing
	Workload balancing

	Benefits
	Requirements
	Changes to CICS externals
	Changes to the IIOP sample resource definitions

	Chapter 4. The CICS Connector for CICS TS
	Overview
	What are CICS connectors?
	The CICS Connector for CICS TS
	The background—accessing CICS programs from Java
	From Java programs outside CICS
	From Java programs inside CICS

	Using the CICS Connector for CICS TS’s CCF interface
	Setting the CCF interface attributes
	CICSConnectionSpec
	ECIInteractionSpec

	Data conversion
	Introducing VisualAge for Java Enterprise Access Builder

	Using the CTG API
	ECIRequest
	JavaGateway

	Benefits
	Requirements
	Restrictions and recommendations for the CICS Connector for CICS TS
	Installation
	Changes to CICS externals
	Messages
	Trace points
	CICS trace
	CTG for OS/390 trace
	The EJB CICS sample application

	Chapter 5. CICS support for the IBM persistent reusable JVM
	Overview
	Enabling serial reuse
	The run-time structure of the JVM
	How CICS manages the JVMs
	Managing the size of the pool
	Selecting the right type of JVM
	Use of resource definitions for JVM selection
	Debugging support in the CICS JVM
	Restrictions

	Benefits
	Requirements
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to resource definition
	Changes to JVM initialization parameters
	Options required by CICS
	Java standard options
	Java nonstandard options
	Samples

	Changes to the application programming interface
	RESP 2 values
	JVM plugin mechanism

	Changes to the system programming interface
	INQUIRE JVMPOOL
	SET JVMPOOL
	INQUIRE PROGRAM
	SET PROGRAM
	CREATE PROGRAM
	COLLECT STATISTICS
	PERFORM STATISTICS RECORD

	Changes to the exit programming interface (XPI)
	Changes to CICS-supplied transactions
	Changes to global user exits
	Changes to user-replaceable modules
	DFHSJJ8O
	Program autoinstall user-replaceable module
	DFHJVMAT

	Changes to monitoring and statistics
	Monitoring
	Statistics

	Changes to problem determination

	Chapter 6. Enhancements to CICS support of TCP/IP
	Overview
	Benefits
	Requirements
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to the system programming interface
	INQUIRE TCPIP
	SET TCPIP
	COLLECT STATISTICS

	Changes to CICS supplied transactions
	CEMT INQUIRE TCPIP
	CEMT SET TCPIP
	CEMT PERFORM STATISTICS

	Changes to monitoring and statistics
	Changes to samples
	Changes to CICS-supplied utilities

	Chapter 7. Java Naming and Directory Interface™ (JNDI)
	Overview of JNDI in CICS
	Security

	Benefits of JNDI in CICS
	Requirements
	Changes to CICS externals
	Other external interfaces
	Application programming interfaces

	Chapter 8. Deploying enterprise beans
	Overview
	Benefits
	Requirements
	Hardware
	Software

	Changes to CICS externals
	The CICS JAR development tool for EJB technology
	Preparing the deployment descriptor
	Code generation
	Using the CICS JAR development tool

	The CICS code generation utility for EJB technology
	The CICS development deployment tool for EJB technology
	Using the CICS development deployment tool

	The CICS production deployment tool for EJB technology
	The final stages of deployment
	Applying generated resource definitions
	Publishing names to the JNDI
	Ensuring that the JAR file is stored in HFS

	Problem determination
	Error handling for the development deployment tool
	Messages
	Trace

	CICS security considerations
	Installation and setup
	Setting up the development deployment Web application
	Controlling deployment using the deployment configuration file
	Setting up the CICS components of the development deployment tool
	Setting up user IDs for the development deployment tool

	Chapter 9. CICSPlex SM management of enterprise beans
	Overview
	Changes to CICSPlex SM externals
	EUI changes
	New BAS resource definition views
	Modified BAS resource definition views
	New operations views
	Modified operations views

	Web User Interface changes

	CICSPlex SM API changes
	New BAS resource definition tables
	Modified BAS resource definition tables
	New operations resource tables
	Modified operations resource tables

	CICSPlex SM workload management of enterprise beans
	Introduction to workload management of enterprise beans
	Workload balancing
	Workload separation
	Transaction affinities
	Programming interfaces

	Part 3. System management and Parallel Sysplex support
	Chapter 10. CICS support for VTAM alias facility
	Overview
	Dynamic LU alias support
	Predefined LU alias support
	When to use VTAM LU aliases with CICS
	Using dynamic LU alias
	Using predefined LU alias

	Cross-network devices that need predefined LU alias
	Considerations when using VTAM LU aliases
	Other factors to consider

	Benefits
	Requirements
	Changes to CICS externals
	Changes to system definition
	Changes to resource definition
	Changes to the application programming interface
	Changes to the system programming interface
	Changes to CICS-supplied transactions
	CETR

	Changes to user-replaceable modules
	Node error program
	Terminal autoinstall URM

	Changes to monitoring
	Additional performance class data fields in DFHTERM

	Changes to problem determination
	Messages
	Dump
	Trace

	Chapter 11. Domain name system (DNS) connection optimization
	Overview
	DNS registration
	Name resolution example

	Benefits
	Requirements
	Changes to CICS externals
	Changes to system definition
	Changes to resource definition
	Changes to the system programming interface
	Changes to CICS supplied transactions
	Changes to problem determination

	Chapter 12. Automatic restart of CICS data-sharing servers
	Overview
	Automatic restart
	Waiting on events during initialization

	Benefits
	Requirements
	Changes to CICS externals
	Changes to server initialization
	Automatic restart manager (ARM) parameters

	Changes to server commands
	Changes to problem determination

	Chapter 13. Monitoring and statistics changes
	Overview
	Monitoring
	Additions and changes to monitoring data

	Statistics

	Changes to CICS externals
	Changes to the system programming interface
	EXEC CICS COLLECT STATISTICS
	COLLECT STATISTICS exception conditions
	EXEC CICS PERFORM STATISTICS RECORD
	PERFORM STATISTICS exception conditions

	Changes to CICS-supplied transactions
	Changes to sample programs
	DFH$MOLS sample monitoring program
	DFH0STAT sample statistics program

	Changes to utility programs
	Changes to monitoring data
	Additional performance class data fields
	Changed performance class data fields

	Part 4. Miscellaneous changes
	Chapter 14. Other changes and enhancements
	Integrated CICS translator
	Overview
	Benefits
	Requirements
	Change to CICS externals
	Using the CICS-supplied procedures
	Specifying CICS translator options

	Sample program for the XLGSTRM global user exit
	Removal of support for the DFHDCT macro
	Changes to CICS file control
	Changes to file control API
	Removal of VSAM support in the DFHFCT macros
	Changes to global user exits in the file control domain

	Changes to DFH0STAT
	Changes to other sample programs
	Changes to CEOT transaction
	Changes to CICSPlex SM support
	Changes in the visual presentation of the CICSPlex SM Web user interface
	Support for additional code pages

	Part 5. Requirements
	Chapter 15. Prerequisite hardware and software for CICS Transaction Server for z/OS
	Hardware prerequisites
	Parallel Sysplex
	Sysplex timer
	DASD paths

	Katakana terminal devices

	Operating system
	IBM database products
	IMS/ESA Database Manager
	IBM DATABASE 2 (DB2)

	IBM telecommunications access methods
	MQSeries® for OS/390
	OS/390 Security Server (RACF)
	CICS VSAM Recovery
	Tivoli Performance Reporter for OS/390
	NetView® for MVS/ESA™
	Programming languages
	CICS components in object-code-only (OCO) form

	Part 6. Appendixes
	Glossary
	Bibliography
	CICS Transaction Server for z/OS
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS books

	Determining if a publication is current

	Index
	Notices
	Trademarks

	Sending your comments to IBM

